@@ -86,20 +86,20 @@ theorem irreducible_Phi (p : ℕ) (hp : p.Prime) (hpa : p ∣ a) (hpb : p ∣ b)
86
86
Irreducible (Φ ℚ a b) := by
87
87
rw [← map_Phi a b (Int.castRingHom ℚ), ← IsPrimitive.Int.irreducible_iff_irreducible_map_cast]
88
88
apply irreducible_of_eisenstein_criterion
89
- · rwa [span_singleton_prime (Int.coe_nat_ne_zero .mpr hp.ne_zero), Int.prime_iff_natAbs_prime]
89
+ · rwa [span_singleton_prime (Int.natCast_ne_zero .mpr hp.ne_zero), Int.prime_iff_natAbs_prime]
90
90
· rw [leadingCoeff_Phi, mem_span_singleton]
91
91
exact mod_cast mt Nat.dvd_one.mp hp.ne_one
92
92
· intro n hn
93
93
rw [mem_span_singleton]
94
94
rw [degree_Phi] at hn; norm_cast at hn
95
95
interval_cases hn : n <;>
96
- simp (config := {decide := true }) only [Φ, coeff_X_pow, coeff_C, Int.coe_nat_dvd .mpr, hpb ,
97
- if_true, coeff_C_mul, if_false, coeff_X_zero, hpa, coeff_add, zero_add, mul_zero, coeff_sub ,
98
- add_zero, zero_sub, dvd_neg, neg_zero, dvd_mul_of_dvd_left]
96
+ simp (config := {decide := true }) only [Φ, coeff_X_pow, coeff_C, Int.natCast_dvd_natCast .mpr,
97
+ hpb, if_true, coeff_C_mul, if_false, coeff_X_zero, hpa, coeff_add, zero_add, mul_zero,
98
+ coeff_sub, add_zero, zero_sub, dvd_neg, neg_zero, dvd_mul_of_dvd_left]
99
99
· simp only [degree_Phi, ← WithBot.coe_zero, WithBot.coe_lt_coe, Nat.succ_pos']
100
100
decide
101
101
· rw [coeff_zero_Phi, span_singleton_pow, mem_span_singleton]
102
- exact mt Int.coe_nat_dvd .mp hp2b
102
+ exact mt Int.natCast_dvd_natCast .mp hp2b
103
103
all_goals exact Monic.isPrimitive (monic_Phi a b)
104
104
#align abel_ruffini.irreducible_Phi AbelRuffini.irreducible_Phi
105
105
0 commit comments