Skip to content

Commit 3a1848e

Browse files
chore: tidy various files (#3584)
1 parent 29b8eef commit 3a1848e

File tree

7 files changed

+109
-147
lines changed

7 files changed

+109
-147
lines changed

Mathlib/Algebra/Algebra/Equiv.lean

Lines changed: 12 additions & 15 deletions
Original file line numberDiff line numberDiff line change
@@ -296,9 +296,9 @@ instance : Inhabited (A₁ ≃ₐ[R] A₁) :=
296296
⟨refl⟩
297297

298298
@[simp]
299-
theorem refl_to_algHom : ↑(refl : A₁ ≃ₐ[R] A₁) = AlgHom.id R A₁ :=
299+
theorem refl_toAlgHom : ↑(refl : A₁ ≃ₐ[R] A₁) = AlgHom.id R A₁ :=
300300
rfl
301-
#align alg_equiv.refl_to_alg_hom AlgEquiv.refl_to_algHom
301+
#align alg_equiv.refl_to_alg_hom AlgEquiv.refl_toAlgHom
302302

303303
@[simp]
304304
theorem coe_refl : ⇑(refl : A₁ ≃ₐ[R] A₁) = id :=
@@ -309,8 +309,7 @@ theorem coe_refl : ⇑(refl : A₁ ≃ₐ[R] A₁) = id :=
309309
@[symm]
310310
def symm (e : A₁ ≃ₐ[R] A₂) : A₂ ≃ₐ[R] A₁ :=
311311
{ e.toRingEquiv.symm with
312-
commutes' := fun r =>
313-
by
312+
commutes' := fun r => by
314313
rw [← e.toRingEquiv.symm_apply_apply (algebraMap R A₁ r)]
315314
congr
316315
change _ = e _
@@ -376,14 +375,14 @@ theorem refl_symm : (AlgEquiv.refl : A₁ ≃ₐ[R] A₁).symm = AlgEquiv.refl :
376375
#align alg_equiv.refl_symm AlgEquiv.refl_symm
377376

378377
--this should be a simp lemma but causes a lint timeout
379-
theorem to_ringEquiv_symm (f : A₁ ≃ₐ[R] A₁) : (f : A₁ ≃+* A₁).symm = f.symm :=
378+
theorem toRingEquiv_symm (f : A₁ ≃ₐ[R] A₁) : (f : A₁ ≃+* A₁).symm = f.symm :=
380379
rfl
381-
#align alg_equiv.to_ring_equiv_symm AlgEquiv.to_ringEquiv_symm
380+
#align alg_equiv.to_ring_equiv_symm AlgEquiv.toRingEquiv_symm
382381

383382
@[simp]
384-
theorem symm_to_ringEquiv : (e.symm : A₂ ≃+* A₁) = (e : A₁ ≃+* A₂).symm :=
383+
theorem symm_toRingEquiv : (e.symm : A₂ ≃+* A₁) = (e : A₁ ≃+* A₂).symm :=
385384
rfl
386-
#align alg_equiv.symm_to_ring_equiv AlgEquiv.symm_to_ringEquiv
385+
#align alg_equiv.symm_to_ring_equiv AlgEquiv.symm_toRingEquiv
387386

388387
/-- Algebra equivalences are transitive. -/
389388
@[trans]
@@ -571,9 +570,9 @@ def toLinearMap : A₁ →ₗ[R] A₂ :=
571570
#align alg_equiv.to_linear_map AlgEquiv.toLinearMap
572571

573572
@[simp]
574-
theorem to_algHom_toLinearMap : (e : A₁ →ₐ[R] A₂).toLinearMap = e.toLinearMap :=
573+
theorem toAlgHom_toLinearMap : (e : A₁ →ₐ[R] A₂).toLinearMap = e.toLinearMap :=
575574
rfl
576-
#align alg_equiv.to_alg_hom_to_linear_map AlgEquiv.to_algHom_toLinearMap
575+
#align alg_equiv.to_alg_hom_to_linear_map AlgEquiv.toAlgHom_toLinearMap
577576

578577
@[simp]
579578
theorem toLinearEquiv_toLinearMap : e.toLinearEquiv.toLinearMap = e.toLinearMap :=
@@ -679,8 +678,7 @@ theorem mul_apply (e₁ e₂ : A₁ ≃ₐ[R] A₁) (x : A₁) : (e₁ * e₂) x
679678

680679
/-- An algebra isomorphism induces a group isomorphism between automorphism groups -/
681680
@[simps apply]
682-
def autCongr (ϕ : A₁ ≃ₐ[R] A₂) : (A₁ ≃ₐ[R] A₁) ≃* A₂ ≃ₐ[R] A₂
683-
where
681+
def autCongr (ϕ : A₁ ≃ₐ[R] A₂) : (A₁ ≃ₐ[R] A₁) ≃* A₂ ≃ₐ[R] A₂ where
684682
toFun ψ := ϕ.symm.trans (ψ.trans ϕ)
685683
invFun ψ := ϕ.trans (ψ.trans ϕ.symm)
686684
left_inv ψ := by
@@ -713,9 +711,8 @@ theorem autCongr_trans (ϕ : A₁ ≃ₐ[R] A₂) (ψ : A₂ ≃ₐ[R] A₃) :
713711

714712
/-- The tautological action by `A₁ ≃ₐ[R] A₁` on `A₁`.
715713
716-
This generalizes `function.End.apply_mul_action`. -/
717-
instance applyMulSemiringAction : MulSemiringAction (A₁ ≃ₐ[R] A₁) A₁
718-
where
714+
This generalizes `Function.End.applyMulAction`. -/
715+
instance applyMulSemiringAction : MulSemiringAction (A₁ ≃ₐ[R] A₁) A₁ where
719716
smul := (· <| ·)
720717
smul_zero := AlgEquiv.map_zero
721718
smul_add := AlgEquiv.map_add

Mathlib/CategoryTheory/Filtered.lean

Lines changed: 48 additions & 56 deletions
Original file line numberDiff line numberDiff line change
@@ -103,8 +103,7 @@ instance (priority := 100) isFiltered_of_semilatticeSup_nonempty (α : Type u) [
103103
#align category_theory.is_filtered_of_semilattice_sup_nonempty CategoryTheory.isFiltered_of_semilatticeSup_nonempty
104104

105105
instance (priority := 100) isFilteredOrEmpty_of_directed_le (α : Type u) [Preorder α]
106-
[IsDirected α (· ≤ ·)] : IsFilteredOrEmpty α
107-
where
106+
[IsDirected α (· ≤ ·)] : IsFilteredOrEmpty α where
108107
cocone_objs X Y :=
109108
let ⟨Z, h1, h2⟩ := exists_ge_ge X Y
110109
⟨Z, homOfLE h1, homOfLE h2, trivial⟩
@@ -154,41 +153,41 @@ noncomputable def max (j j' : C) : C :=
154153
(IsFilteredOrEmpty.cocone_objs j j').choose
155154
#align category_theory.is_filtered.max CategoryTheory.IsFiltered.max
156155

157-
/-- `left_to_max j j'` is an arbitrary choice of morphism from `j` to `max j j'`,
158-
whose existence is ensured by `is_filtered`.
156+
/-- `leftToMax j j'` is an arbitrary choice of morphism from `j` to `max j j'`,
157+
whose existence is ensured by `IsFiltered`.
159158
-/
160159
noncomputable def leftToMax (j j' : C) : j ⟶ max j j' :=
161160
(IsFilteredOrEmpty.cocone_objs j j').choose_spec.choose
162161
#align category_theory.is_filtered.left_to_max CategoryTheory.IsFiltered.leftToMax
163162

164-
/-- `right_to_max j j'` is an arbitrary choice of morphism from `j'` to `max j j'`,
165-
whose existence is ensured by `is_filtered`.
163+
/-- `rightToMax j j'` is an arbitrary choice of morphism from `j'` to `max j j'`,
164+
whose existence is ensured by `IsFiltered`.
166165
-/
167166
noncomputable def rightToMax (j j' : C) : j' ⟶ max j j' :=
168167
(IsFilteredOrEmpty.cocone_objs j j').choose_spec.choose_spec.choose
169168
#align category_theory.is_filtered.right_to_max CategoryTheory.IsFiltered.rightToMax
170169

171170
/-- `coeq f f'`, for morphisms `f f' : j ⟶ j'`, is an arbitrary choice of object
172-
which admits a morphism `coeq_hom f f' : j' ⟶ coeq f f'` such that
173-
`coeq_condition : f ≫ coeq_hom f f' = f' ≫ coeq_hom f f'`.
174-
Its existence is ensured by `is_filtered`.
171+
which admits a morphism `coeqHom f f' : j' ⟶ coeq f f'` such that
172+
`coeq_condition : f ≫ coeqHom f f' = f' ≫ coeqHom f f'`.
173+
Its existence is ensured by `IsFiltered`.
175174
-/
176175
noncomputable def coeq {j j' : C} (f f' : j ⟶ j') : C :=
177176
(IsFilteredOrEmpty.cocone_maps f f').choose
178177
#align category_theory.is_filtered.coeq CategoryTheory.IsFiltered.coeq
179178

180-
/-- `coeq_hom f f'`, for morphisms `f f' : j ⟶ j'`, is an arbitrary choice of morphism
181-
`coeq_hom f f' : j' ⟶ coeq f f'` such that
182-
`coeq_condition : f ≫ coeq_hom f f' = f' ≫ coeq_hom f f'`.
183-
Its existence is ensured by `is_filtered`.
179+
/-- `coeqHom f f'`, for morphisms `f f' : j ⟶ j'`, is an arbitrary choice of morphism
180+
`coeqHom f f' : j' ⟶ coeq f f'` such that
181+
`coeq_condition : f ≫ coeqHom f f' = f' ≫ coeqHom f f'`.
182+
Its existence is ensured by `IsFiltered`.
184183
-/
185184
noncomputable def coeqHom {j j' : C} (f f' : j ⟶ j') : j' ⟶ coeq f f' :=
186185
(IsFilteredOrEmpty.cocone_maps f f').choose_spec.choose
187186
#align category_theory.is_filtered.coeq_hom CategoryTheory.IsFiltered.coeqHom
188187

189188
-- porting note: the simp tag has been removed as the linter complained
190189
/-- `coeq_condition f f'`, for morphisms `f f' : j ⟶ j'`, is the proof that
191-
`f ≫ coeq_hom f f' = f' ≫ coeq_hom f f'`.
190+
`f ≫ coeqHom f f' = f' ≫ coeqHom f f'`.
192191
-/
193192
@[reassoc]
194193
theorem coeq_condition {j j' : C} (f f' : j ⟶ j') : f ≫ coeqHom f f' = f' ≫ coeqHom f f' :=
@@ -280,7 +279,7 @@ theorem toSup_commutes {X Y : C} (mX : X ∈ O) (mY : Y ∈ O) {f : X ⟶ Y}
280279

281280
variable {J : Type v} [SmallCategory J] [FinCategory J]
282281

283-
/-- If we have `is_filtered C`, then for any functor `F : J ⥤ C` with `fin_category J`,
282+
/-- If we have `IsFiltered C`, then for any functor `F : J ⥤ C` with `FinCategory J`,
284283
there exists a cocone over `F`.
285284
-/
286285
theorem cocone_nonempty (F : J ⥤ C) : _root_.Nonempty (Cocone F) := by
@@ -301,7 +300,7 @@ theorem cocone_nonempty (F : J ⥤ C) : _root_.Nonempty (Cocone F) := by
301300
exact ⟨j, rfl, j', g, by simp⟩
302301
#align category_theory.is_filtered.cocone_nonempty CategoryTheory.IsFiltered.cocone_nonempty
303302

304-
/-- An arbitrary choice of cocone over `F : J ⥤ C`, for `fin_category J` and `is_filtered C`.
303+
/-- An arbitrary choice of cocone over `F : J ⥤ C`, for `FinCategory J` and `IsFiltered C`.
305304
-/
306305
noncomputable def cocone (F : J ⥤ C) : Cocone F :=
307306
(cocone_nonempty F).some
@@ -338,46 +337,46 @@ variable {C}
338337
variable [IsFilteredOrEmpty C]
339338

340339
/-- `max₃ j₁ j₂ j₃` is an arbitrary choice of object to the right of `j₁`, `j₂` and `j₃`,
341-
whose existence is ensured by `is_filtered`.
340+
whose existence is ensured by `IsFiltered`.
342341
-/
343342
noncomputable def max₃ (j₁ j₂ j₃ : C) : C :=
344343
max (max j₁ j₂) j₃
345344
#align category_theory.is_filtered.max₃ CategoryTheory.IsFiltered.max₃
346345

347-
/-- `first_to_max₃ j₁ j₂ j₃` is an arbitrary choice of morphism from `j₁` to `max₃ j₁ j₂ j₃`,
348-
whose existence is ensured by `is_filtered`.
346+
/-- `firstToMax₃ j₁ j₂ j₃` is an arbitrary choice of morphism from `j₁` to `max₃ j₁ j₂ j₃`,
347+
whose existence is ensured by `IsFiltered`.
349348
-/
350349
noncomputable def firstToMax₃ (j₁ j₂ j₃ : C) : j₁ ⟶ max₃ j₁ j₂ j₃ :=
351350
leftToMax j₁ j₂ ≫ leftToMax (max j₁ j₂) j₃
352351
#align category_theory.is_filtered.first_to_max₃ CategoryTheory.IsFiltered.firstToMax₃
353352

354-
/-- `second_to_max₃ j₁ j₂ j₃` is an arbitrary choice of morphism from `j₂` to `max₃ j₁ j₂ j₃`,
355-
whose existence is ensured by `is_filtered`.
353+
/-- `secondToMax₃ j₁ j₂ j₃` is an arbitrary choice of morphism from `j₂` to `max₃ j₁ j₂ j₃`,
354+
whose existence is ensured by `IsFiltered`.
356355
-/
357356
noncomputable def secondToMax₃ (j₁ j₂ j₃ : C) : j₂ ⟶ max₃ j₁ j₂ j₃ :=
358357
rightToMax j₁ j₂ ≫ leftToMax (max j₁ j₂) j₃
359358
#align category_theory.is_filtered.second_to_max₃ CategoryTheory.IsFiltered.secondToMax₃
360359

361-
/-- `third_to_max₃ j₁ j₂ j₃` is an arbitrary choice of morphism from `j₃` to `max₃ j₁ j₂ j₃`,
362-
whose existence is ensured by `is_filtered`.
360+
/-- `thirdToMax₃ j₁ j₂ j₃` is an arbitrary choice of morphism from `j₃` to `max₃ j₁ j₂ j₃`,
361+
whose existence is ensured by `IsFiltered`.
363362
-/
364363
noncomputable def thirdToMax₃ (j₁ j₂ j₃ : C) : j₃ ⟶ max₃ j₁ j₂ j₃ :=
365364
rightToMax (max j₁ j₂) j₃
366365
#align category_theory.is_filtered.third_to_max₃ CategoryTheory.IsFiltered.thirdToMax₃
367366

368367
/-- `coeq₃ f g h`, for morphisms `f g h : j₁ ⟶ j₂`, is an arbitrary choice of object
369-
which admits a morphism `coeq₃_hom f g h : j₂ ⟶ coeq₃ f g h` such that
368+
which admits a morphism `coeq₃Hom f g h : j₂ ⟶ coeq₃ f g h` such that
370369
`coeq₃_condition₁`, `coeq₃_condition₂` and `coeq₃_condition₃` are satisfied.
371-
Its existence is ensured by `is_filtered`.
370+
Its existence is ensured by `IsFiltered`.
372371
-/
373372
noncomputable def coeq₃ {j₁ j₂ : C} (f g h : j₁ ⟶ j₂) : C :=
374373
coeq (coeqHom f g ≫ leftToMax (coeq f g) (coeq g h))
375374
(coeqHom g h ≫ rightToMax (coeq f g) (coeq g h))
376375
#align category_theory.is_filtered.coeq₃ CategoryTheory.IsFiltered.coeq₃
377376

378-
/-- `coeq₃_hom f g h`, for morphisms `f g h : j₁ ⟶ j₂`, is an arbitrary choice of morphism
377+
/-- `coeq₃Hom f g h`, for morphisms `f g h : j₁ ⟶ j₂`, is an arbitrary choice of morphism
379378
`j₂ ⟶ coeq₃ f g h` such that `coeq₃_condition₁`, `coeq₃_condition₂` and `coeq₃_condition₃`
380-
are satisfied. Its existence is ensured by `is_filtered`.
379+
are satisfied. Its existence is ensured by `IsFiltered`.
381380
-/
382381
noncomputable def coeq₃Hom {j₁ j₂ : C} (f g h : j₁ ⟶ j₂) : j₂ ⟶ coeq₃ f g h :=
383382
coeqHom f g ≫
@@ -464,7 +463,7 @@ end SpecialShapes
464463

465464
end IsFiltered
466465

467-
/-- A category `is_cofiltered_or_empty` if
466+
/-- A category `IsCofilteredOrEmpty` if
468467
1. for every pair of objects there exists another object "to the left", and
469468
2. for every pair of parallel morphisms there exists a morphism to the left so the compositions
470469
are equal.
@@ -477,7 +476,7 @@ class IsCofilteredOrEmpty : Prop where
477476
cone_maps : ∀ ⦃X Y : C⦄ (f g : X ⟶ Y), ∃ (W : _)(h : W ⟶ X), h ≫ f = h ≫ g
478477
#align category_theory.is_cofiltered_or_empty CategoryTheory.IsCofilteredOrEmpty
479478

480-
/-- A category `is_cofiltered` if
479+
/-- A category `IsCofiltered` if
481480
1. for every pair of objects there exists another object "to the left",
482481
2. for every pair of parallel morphisms there exists a morphism to the left so the compositions
483482
are equal, and
@@ -491,8 +490,7 @@ class IsCofiltered extends IsCofilteredOrEmpty C : Prop where
491490
#align category_theory.is_cofiltered CategoryTheory.IsCofiltered
492491

493492
instance (priority := 100) isCofilteredOrEmpty_of_semilatticeInf (α : Type u) [SemilatticeInf α] :
494-
IsCofilteredOrEmpty α
495-
where
493+
IsCofilteredOrEmpty α where
496494
cone_objs X Y := ⟨X ⊓ Y, homOfLE inf_le_left, homOfLE inf_le_right, trivial⟩
497495
cone_maps X Y f g := ⟨X, 𝟙 _, by
498496
apply ULift.ext
@@ -504,8 +502,7 @@ instance (priority := 100) isCofiltered_of_semilatticeInf_nonempty (α : Type u)
504502
#align category_theory.is_cofiltered_of_semilattice_inf_nonempty CategoryTheory.isCofiltered_of_semilatticeInf_nonempty
505503

506504
instance (priority := 100) isCofilteredOrEmpty_of_directed_ge (α : Type u) [Preorder α]
507-
[IsDirected α (· ≥ ·)] : IsCofilteredOrEmpty α
508-
where
505+
[IsDirected α (· ≥ ·)] : IsCofilteredOrEmpty α where
509506
cone_objs X Y :=
510507
let ⟨Z, hX, hY⟩ := exists_le_le X Y
511508
⟨Z, homOfLE hX, homOfLE hY, trivial⟩
@@ -523,8 +520,7 @@ example (α : Type u) [SemilatticeInf α] [OrderBot α] : IsCofiltered α := by
523520

524521
example (α : Type u) [SemilatticeInf α] [OrderTop α] : IsCofiltered α := by infer_instance
525522

526-
instance : IsCofiltered (Discrete PUnit)
527-
where
523+
instance : IsCofiltered (Discrete PUnit) where
528524
cone_objs X Y := ⟨⟨PUnit.unit⟩, ⟨⟨by trivial⟩⟩, ⟨⟨Subsingleton.elim _ _⟩⟩, trivial⟩
529525
cone_maps X Y f g := ⟨⟨PUnit.unit⟩, ⟨⟨by trivial⟩⟩, by
530526
apply ULift.ext
@@ -550,47 +546,47 @@ variable [IsCofilteredOrEmpty C]
550546
--#align category_theory.is_cofiltered.cone_maps CategoryTheory.IsCofiltered.cone_maps
551547

552548
/-- `min j j'` is an arbitrary choice of object to the left of both `j` and `j'`,
553-
whose existence is ensured by `is_cofiltered`.
549+
whose existence is ensured by `IsCofiltered`.
554550
-/
555551
noncomputable def min (j j' : C) : C :=
556552
(IsCofilteredOrEmpty.cone_objs j j').choose
557553
#align category_theory.is_cofiltered.min CategoryTheory.IsCofiltered.min
558554

559555
/-- `min_to_left j j'` is an arbitrary choice of morphism from `min j j'` to `j`,
560-
whose existence is ensured by `is_cofiltered`.
556+
whose existence is ensured by `IsCofiltered`.
561557
-/
562558
noncomputable def minToLeft (j j' : C) : min j j' ⟶ j :=
563559
(IsCofilteredOrEmpty.cone_objs j j').choose_spec.choose
564560
#align category_theory.is_cofiltered.min_to_left CategoryTheory.IsCofiltered.minToLeft
565561

566562
/-- `min_to_right j j'` is an arbitrary choice of morphism from `min j j'` to `j'`,
567-
whose existence is ensured by `is_cofiltered`.
563+
whose existence is ensured by `IsCofiltered`.
568564
-/
569565
noncomputable def minToRight (j j' : C) : min j j' ⟶ j' :=
570566
(IsCofilteredOrEmpty.cone_objs j j').choose_spec.choose_spec.choose
571567
#align category_theory.is_cofiltered.min_to_right CategoryTheory.IsCofiltered.minToRight
572568

573569
/-- `eq f f'`, for morphisms `f f' : j ⟶ j'`, is an arbitrary choice of object
574-
which admits a morphism `eq_hom f f' : eq f f' ⟶ j` such that
575-
`eq_condition : eq_hom f f' ≫ f = eq_hom f f' ≫ f'`.
576-
Its existence is ensured by `is_cofiltered`.
570+
which admits a morphism `eqHom f f' : eq f f' ⟶ j` such that
571+
`eq_condition : eqHom f f' ≫ f = eqHom f f' ≫ f'`.
572+
Its existence is ensured by `IsCofiltered`.
577573
-/
578574
noncomputable def eq {j j' : C} (f f' : j ⟶ j') : C :=
579575
(IsCofilteredOrEmpty.cone_maps f f').choose
580576
#align category_theory.is_cofiltered.eq CategoryTheory.IsCofiltered.eq
581577

582-
/-- `eq_hom f f'`, for morphisms `f f' : j ⟶ j'`, is an arbitrary choice of morphism
583-
`eq_hom f f' : eq f f' ⟶ j` such that
584-
`eq_condition : eq_hom f f' ≫ f = eq_hom f f' ≫ f'`.
585-
Its existence is ensured by `is_cofiltered`.
578+
/-- `eqHom f f'`, for morphisms `f f' : j ⟶ j'`, is an arbitrary choice of morphism
579+
`eqHom f f' : eq f f' ⟶ j` such that
580+
`eq_condition : eqHom f f' ≫ f = eqHom f f' ≫ f'`.
581+
Its existence is ensured by `IsCofiltered`.
586582
-/
587583
noncomputable def eqHom {j j' : C} (f f' : j ⟶ j') : eq f f' ⟶ j :=
588584
(IsCofilteredOrEmpty.cone_maps f f').choose_spec.choose
589585
#align category_theory.is_cofiltered.eq_hom CategoryTheory.IsCofiltered.eqHom
590586

591587
-- porting note: the simp tag has been removed as the linter complained
592588
/-- `eq_condition f f'`, for morphisms `f f' : j ⟶ j'`, is the proof that
593-
`eq_hom f f' ≫ f = eq_hom f f' ≫ f'`.
589+
`eqHom f f' ≫ f = eqHom f f' ≫ f'`.
594590
-/
595591
@[reassoc]
596592
theorem eq_condition {j j' : C} (f f' : j ⟶ j') : eqHom f f' ≫ f = eqHom f f' ≫ f' :=
@@ -697,7 +693,7 @@ theorem infTo_commutes {X Y : C} (mX : X ∈ O) (mY : Y ∈ O) {f : X ⟶ Y}
697693

698694
variable {J : Type w} [SmallCategory J] [FinCategory J]
699695

700-
/-- If we have `is_cofiltered C`, then for any functor `F : J ⥤ C` with `fin_category J`,
696+
/-- If we have `IsCofiltered C`, then for any functor `F : J ⥤ C` with `FinCategory J`,
701697
there exists a cone over `F`.
702698
-/
703699
theorem cone_nonempty (F : J ⥤ C) : _root_.Nonempty (Cone F) := by
@@ -719,7 +715,7 @@ theorem cone_nonempty (F : J ⥤ C) : _root_.Nonempty (Cone F) := by
719715
exact ⟨j, rfl, j', g, by simp⟩
720716
#align category_theory.is_cofiltered.cone_nonempty CategoryTheory.IsCofiltered.cone_nonempty
721717

722-
/-- An arbitrary choice of cone over `F : J ⥤ C`, for `fin_category J` and `is_cofiltered C`.
718+
/-- An arbitrary choice of cone over `F : J ⥤ C`, for `FinCategory J` and `IsCofiltered C`.
723719
-/
724720
noncomputable def cone (F : J ⥤ C) : Cone F :=
725721
(cone_nonempty F).some
@@ -758,28 +754,24 @@ section Opposite
758754

759755
open Opposite
760756

761-
instance isCofiltered_op_of_isFiltered [IsFiltered C] : IsCofiltered Cᵒᵖ
762-
where
757+
instance isCofiltered_op_of_isFiltered [IsFiltered C] : IsCofiltered Cᵒᵖ where
763758
cone_objs X Y :=
764759
⟨op (IsFiltered.max X.unop Y.unop), (IsFiltered.leftToMax _ _).op,
765760
(IsFiltered.rightToMax _ _).op, trivial⟩
766761
cone_maps X Y f g :=
767-
⟨op (IsFiltered.coeq f.unop g.unop), (IsFiltered.coeqHom _ _).op,
768-
by
762+
⟨op (IsFiltered.coeq f.unop g.unop), (IsFiltered.coeqHom _ _).op, by
769763
rw [show f = f.unop.op by simp, show g = g.unop.op by simp, ← op_comp, ← op_comp]
770764
congr 1
771765
exact IsFiltered.coeq_condition f.unop g.unop⟩
772766
Nonempty := ⟨op IsFiltered.Nonempty.some⟩
773767
#align category_theory.is_cofiltered_op_of_is_filtered CategoryTheory.isCofiltered_op_of_isFiltered
774768

775-
instance isFiltered_op_of_isCofiltered [IsCofiltered C] : IsFiltered Cᵒᵖ
776-
where
769+
instance isFiltered_op_of_isCofiltered [IsCofiltered C] : IsFiltered Cᵒᵖ where
777770
cocone_objs X Y :=
778771
⟨op (IsCofiltered.min X.unop Y.unop), (IsCofiltered.minToLeft X.unop Y.unop).op,
779772
(IsCofiltered.minToRight X.unop Y.unop).op, trivial⟩
780773
cocone_maps X Y f g :=
781-
⟨op (IsCofiltered.eq f.unop g.unop), (IsCofiltered.eqHom f.unop g.unop).op,
782-
by
774+
⟨op (IsCofiltered.eq f.unop g.unop), (IsCofiltered.eqHom f.unop g.unop).op, by
783775
rw [show f = f.unop.op by simp, show g = g.unop.op by simp, ← op_comp, ← op_comp]
784776
congr 1
785777
exact IsCofiltered.eq_condition f.unop g.unop⟩

0 commit comments

Comments
 (0)