|
| 1 | +/- |
| 2 | +Copyright (c) 2019 Sébastien Gouëzel. All rights reserved. |
| 3 | +Released under Apache 2.0 license as described in the file LICENSE. |
| 4 | +Authors: Jan-David Salchow, Sébastien Gouëzel, Jean Lo, Yury Kudryashov, Frédéric Dupuis, |
| 5 | + Heather Macbeth |
| 6 | +
|
| 7 | +! This file was ported from Lean 3 source module topology.algebra.module.determinant |
| 8 | +! leanprover-community/mathlib commit 4b262b8463002087e407be07080b91d213361e64 |
| 9 | +! Please do not edit these lines, except to modify the commit id |
| 10 | +! if you have ported upstream changes. |
| 11 | +-/ |
| 12 | +import Mathlib.Topology.Algebra.Module.Basic |
| 13 | +import Mathlib.LinearAlgebra.Determinant |
| 14 | + |
| 15 | +/-! |
| 16 | +# The determinant of a continuous linear map. |
| 17 | +-/ |
| 18 | + |
| 19 | + |
| 20 | +namespace ContinuousLinearMap |
| 21 | + |
| 22 | +set_option synthInstance.etaExperiment true in |
| 23 | +/-- The determinant of a continuous linear map, mainly as a convenience device to be able to |
| 24 | +write `A.det` instead of `(A : M →ₗ[R] M).det`. -/ |
| 25 | +@[reducible] |
| 26 | +noncomputable def det {R : Type _} [CommRing R] {M : Type _} [TopologicalSpace M] [AddCommGroup M] |
| 27 | + [Module R M] (A : M →L[R] M) : R := |
| 28 | + LinearMap.det (A : M →ₗ[R] M) |
| 29 | +#align continuous_linear_map.det ContinuousLinearMap.det |
| 30 | + |
| 31 | +end ContinuousLinearMap |
| 32 | + |
| 33 | +namespace ContinuousLinearEquiv |
| 34 | + |
| 35 | +set_option synthInstance.etaExperiment true in |
| 36 | +@[simp] |
| 37 | +theorem det_coe_symm {R : Type _} [Field R] {M : Type _} [TopologicalSpace M] [AddCommGroup M] |
| 38 | + [Module R M] (A : M ≃L[R] M) : (A.symm : M →L[R] M).det = (A : M →L[R] M).det⁻¹ := |
| 39 | + LinearEquiv.det_coe_symm A.toLinearEquiv |
| 40 | +#align continuous_linear_equiv.det_coe_symm ContinuousLinearEquiv.det_coe_symm |
| 41 | + |
| 42 | +end ContinuousLinearEquiv |
0 commit comments