Skip to content

Commit 3c3ab91

Browse files
KomyyyParcly-TaxelurkudChrisHughes24
committed
feat: port MeasureTheory.Function.EssSup (#4098)
Co-authored-by: Parcly Taxel <reddeloostw@gmail.com> Co-authored-by: Yury G. Kudryashov <urkud@urkud.name> Co-authored-by: ChrisHughes24 <chrishughes24@gmail.com>
1 parent a85cea9 commit 3c3ab91

File tree

2 files changed

+345
-0
lines changed

2 files changed

+345
-0
lines changed

Mathlib.lean

Lines changed: 1 addition & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -1665,6 +1665,7 @@ import Mathlib.MeasureTheory.Constructions.BorelSpace.Basic
16651665
import Mathlib.MeasureTheory.Covering.VitaliFamily
16661666
import Mathlib.MeasureTheory.Decomposition.UnsignedHahn
16671667
import Mathlib.MeasureTheory.Function.AEMeasurableSequence
1668+
import Mathlib.MeasureTheory.Function.EssSup
16681669
import Mathlib.MeasureTheory.Group.Arithmetic
16691670
import Mathlib.MeasureTheory.Group.MeasurableEquiv
16701671
import Mathlib.MeasureTheory.Group.Pointwise
Lines changed: 344 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,344 @@
1+
/-
2+
Copyright (c) 2021 Rémy Degenne. All rights reserved.
3+
Released under Apache 2.0 license as described in the file LICENSE.
4+
Authors: Rémy Degenne
5+
6+
! This file was ported from Lean 3 source module measure_theory.function.ess_sup
7+
! leanprover-community/mathlib commit bf6a01357ff5684b1ebcd0f1a13be314fc82c0bf
8+
! Please do not edit these lines, except to modify the commit id
9+
! if you have ported upstream changes.
10+
-/
11+
import Mathlib.MeasureTheory.Constructions.BorelSpace.Basic
12+
import Mathlib.Order.Filter.ENNReal
13+
14+
/-!
15+
# Essential supremum and infimum
16+
We define the essential supremum and infimum of a function `f : α → β` with respect to a measure
17+
`μ` on `α`. The essential supremum is the infimum of the constants `c : β` such that `f x ≤ c`
18+
almost everywhere.
19+
20+
TODO: The essential supremum of functions `α → ℝ≥0∞` is used in particular to define the norm in
21+
the `L∞` space (see MeasureTheory/LpSpace.lean).
22+
23+
There is a different quantity which is sometimes also called essential supremum: the least
24+
upper-bound among measurable functions of a family of measurable functions (in an almost-everywhere
25+
sense). We do not define that quantity here, which is simply the supremum of a map with values in
26+
`α →ₘ[μ] β` (see MeasureTheory/AEEqFun.lean).
27+
28+
## Main definitions
29+
30+
* `essSup f μ := μ.ae.limsup f`
31+
* `essInf f μ := μ.ae.liminf f`
32+
-/
33+
34+
35+
open MeasureTheory Filter Set TopologicalSpace
36+
37+
open ENNReal MeasureTheory NNReal
38+
39+
variable {α β : Type _} {m : MeasurableSpace α} {μ ν : Measure α}
40+
41+
section ConditionallyCompleteLattice
42+
43+
variable [ConditionallyCompleteLattice β]
44+
45+
/-- Essential supremum of `f` with respect to measure `μ`: the smallest `c : β` such that
46+
`f x ≤ c` a.e. -/
47+
def essSup {_ : MeasurableSpace α} (f : α → β) (μ : Measure α) :=
48+
μ.ae.limsup f
49+
#align ess_sup essSup
50+
51+
/-- Essential infimum of `f` with respect to measure `μ`: the greatest `c : β` such that
52+
`c ≤ f x` a.e. -/
53+
def essInf {_ : MeasurableSpace α} (f : α → β) (μ : Measure α) :=
54+
μ.ae.liminf f
55+
#align ess_inf essInf
56+
57+
theorem essSup_congr_ae {f g : α → β} (hfg : f =ᵐ[μ] g) : essSup f μ = essSup g μ :=
58+
limsup_congr hfg
59+
#align ess_sup_congr_ae essSup_congr_ae
60+
61+
theorem essInf_congr_ae {f g : α → β} (hfg : f =ᵐ[μ] g) : essInf f μ = essInf g μ :=
62+
@essSup_congr_ae α βᵒᵈ _ _ _ _ _ hfg
63+
#align ess_inf_congr_ae essInf_congr_ae
64+
65+
@[simp]
66+
theorem essSup_const' [μ.ae.NeBot] (c : β) : essSup (fun _ : α => c) μ = c :=
67+
limsup_const _
68+
#align ess_sup_const' essSup_const'
69+
70+
@[simp]
71+
theorem essInf_const' [μ.ae.NeBot] (c : β) : essInf (fun _ : α => c) μ = c :=
72+
liminf_const _
73+
#align ess_inf_const' essInf_const'
74+
75+
theorem essSup_const (c : β) (hμ : μ ≠ 0) : essSup (fun _ : α => c) μ = c := by
76+
rw [← ae_neBot] at hμ
77+
exact essSup_const' _
78+
#align ess_sup_const essSup_const
79+
80+
theorem essInf_const (c : β) (hμ : μ ≠ 0) : essInf (fun _ : α => c) μ = c := by
81+
rw [← ae_neBot] at hμ
82+
exact essInf_const' _
83+
#align ess_inf_const essInf_const
84+
85+
end ConditionallyCompleteLattice
86+
87+
section ConditionallyCompleteLinearOrder
88+
89+
variable [ConditionallyCompleteLinearOrder β] {x : β} {f : α → β}
90+
91+
theorem essSup_eq_sInf {m : MeasurableSpace α} (μ : Measure α) (f : α → β) :
92+
essSup f μ = sInf { a | μ { x | a < f x } = 0 } := by
93+
dsimp [essSup, limsup, limsSup]
94+
simp only [eventually_map, ae_iff, not_le]
95+
#align ess_sup_eq_Inf essSup_eq_sInf
96+
97+
theorem essInf_eq_sSup {m : MeasurableSpace α} (μ : Measure α) (f : α → β) :
98+
essInf f μ = sSup { a | μ { x | f x < a } = 0 } := by
99+
dsimp [essInf, liminf, limsInf]
100+
simp only [eventually_map, ae_iff, not_le]
101+
#align ess_inf_eq_Sup essInf_eq_sSup
102+
103+
theorem ae_lt_of_essSup_lt (hx : essSup f μ < x)
104+
(hf : IsBoundedUnder (· ≤ ·) μ.ae f := by isBoundedDefault) :
105+
∀ᵐ y ∂μ, f y < x :=
106+
eventually_lt_of_limsup_lt hx hf
107+
#align ae_lt_of_ess_sup_lt ae_lt_of_essSup_lt
108+
109+
theorem ae_lt_of_lt_essInf (hx : x < essInf f μ)
110+
(hf : IsBoundedUnder (· ≥ ·) μ.ae f := by isBoundedDefault) :
111+
∀ᵐ y ∂μ, x < f y :=
112+
eventually_lt_of_lt_liminf hx hf
113+
#align ae_lt_of_lt_ess_inf ae_lt_of_lt_essInf
114+
115+
variable [TopologicalSpace β] [FirstCountableTopology β] [OrderTopology β]
116+
117+
theorem ae_le_essSup
118+
(hf : IsBoundedUnder (· ≤ ·) μ.ae f := by isBoundedDefault) :
119+
∀ᵐ y ∂μ, f y ≤ essSup f μ :=
120+
eventually_le_limsup hf
121+
#align ae_le_ess_sup ae_le_essSup
122+
123+
theorem ae_essInf_le
124+
(hf : IsBoundedUnder (· ≥ ·) μ.ae f := by isBoundedDefault) :
125+
∀ᵐ y ∂μ, essInf f μ ≤ f y :=
126+
eventually_liminf_le hf
127+
#align ae_ess_inf_le ae_essInf_le
128+
129+
theorem meas_essSup_lt
130+
(hf : IsBoundedUnder (· ≤ ·) μ.ae f := by isBoundedDefault) :
131+
μ { y | essSup f μ < f y } = 0 := by
132+
simp_rw [← not_le]
133+
exact ae_le_essSup hf
134+
#align meas_ess_sup_lt meas_essSup_lt
135+
136+
theorem meas_lt_essInf
137+
(hf : IsBoundedUnder (· ≥ ·) μ.ae f := by isBoundedDefault) :
138+
μ { y | f y < essInf f μ } = 0 := by
139+
simp_rw [← not_le]
140+
exact ae_essInf_le hf
141+
#align meas_lt_ess_inf meas_lt_essInf
142+
143+
end ConditionallyCompleteLinearOrder
144+
145+
section CompleteLattice
146+
147+
variable [CompleteLattice β]
148+
149+
@[simp]
150+
theorem essSup_measure_zero {m : MeasurableSpace α} {f : α → β} : essSup f (0 : Measure α) = ⊥ :=
151+
le_bot_iff.mp (sInf_le (by simp [Set.mem_setOf_eq, EventuallyLE, ae_iff]))
152+
#align ess_sup_measure_zero essSup_measure_zero
153+
154+
@[simp]
155+
theorem essInf_measure_zero {_ : MeasurableSpace α} {f : α → β} : essInf f (0 : Measure α) = ⊤ :=
156+
@essSup_measure_zero α βᵒᵈ _ _ _
157+
#align ess_inf_measure_zero essInf_measure_zero
158+
159+
theorem essSup_mono_ae {f g : α → β} (hfg : f ≤ᵐ[μ] g) : essSup f μ ≤ essSup g μ :=
160+
limsup_le_limsup hfg
161+
#align ess_sup_mono_ae essSup_mono_ae
162+
163+
theorem essInf_mono_ae {f g : α → β} (hfg : f ≤ᵐ[μ] g) : essInf f μ ≤ essInf g μ :=
164+
liminf_le_liminf hfg
165+
#align ess_inf_mono_ae essInf_mono_ae
166+
167+
theorem essSup_le_of_ae_le {f : α → β} (c : β) (hf : f ≤ᵐ[μ] fun _ => c) : essSup f μ ≤ c := by
168+
refine' (essSup_mono_ae hf).trans _
169+
by_cases hμ : μ = 0
170+
· simp [hμ]
171+
· rwa [essSup_const]
172+
#align ess_sup_le_of_ae_le essSup_le_of_ae_le
173+
174+
theorem le_essInf_of_ae_le {f : α → β} (c : β) (hf : (fun _ => c) ≤ᵐ[μ] f) : c ≤ essInf f μ :=
175+
@essSup_le_of_ae_le α βᵒᵈ _ _ _ _ c hf
176+
#align le_ess_inf_of_ae_le le_essInf_of_ae_le
177+
178+
theorem essSup_const_bot : essSup (fun _ : α => (⊥ : β)) μ = (⊥ : β) :=
179+
limsup_const_bot
180+
#align ess_sup_const_bot essSup_const_bot
181+
182+
theorem essInf_const_top : essInf (fun _ : α => (⊤ : β)) μ = (⊤ : β) :=
183+
liminf_const_top
184+
#align ess_inf_const_top essInf_const_top
185+
186+
theorem OrderIso.essSup_apply {m : MeasurableSpace α} {γ} [CompleteLattice γ] (f : α → β)
187+
(μ : Measure α) (g : β ≃o γ) : g (essSup f μ) = essSup (fun x => g (f x)) μ := by
188+
refine' OrderIso.limsup_apply g _ _ _ _
189+
all_goals isBoundedDefault
190+
#align order_iso.ess_sup_apply OrderIso.essSup_apply
191+
192+
theorem OrderIso.essInf_apply {_ : MeasurableSpace α} {γ} [CompleteLattice γ] (f : α → β)
193+
(μ : Measure α) (g : β ≃o γ) : g (essInf f μ) = essInf (fun x => g (f x)) μ :=
194+
@OrderIso.essSup_apply α βᵒᵈ _ _ γᵒᵈ _ _ _ g.dual
195+
#align order_iso.ess_inf_apply OrderIso.essInf_apply
196+
197+
theorem essSup_mono_measure {f : α → β} (hμν : ν ≪ μ) : essSup f ν ≤ essSup f μ := by
198+
refine' limsup_le_limsup_of_le (Measure.ae_le_iff_absolutelyContinuous.mpr hμν) _ _
199+
all_goals isBoundedDefault
200+
#align ess_sup_mono_measure essSup_mono_measure
201+
202+
theorem essSup_mono_measure' {α : Type _} {β : Type _} {_ : MeasurableSpace α}
203+
{μ ν : MeasureTheory.Measure α} [CompleteLattice β] {f : α → β} (hμν : ν ≤ μ) :
204+
essSup f ν ≤ essSup f μ :=
205+
essSup_mono_measure (Measure.absolutelyContinuous_of_le hμν)
206+
#align ess_sup_mono_measure' essSup_mono_measure'
207+
208+
theorem essInf_antitone_measure {f : α → β} (hμν : μ ≪ ν) : essInf f ν ≤ essInf f μ := by
209+
refine' liminf_le_liminf_of_le (Measure.ae_le_iff_absolutelyContinuous.mpr hμν) _ _
210+
all_goals isBoundedDefault
211+
#align ess_inf_antitone_measure essInf_antitone_measure
212+
213+
theorem essSup_smul_measure {f : α → β} {c : ℝ≥0∞} (hc : c ≠ 0) :
214+
essSup f (c • μ) = essSup f μ := by
215+
simp_rw [essSup]
216+
suffices h_smul : (c • μ).ae = μ.ae; · rw [h_smul]
217+
ext1
218+
simp_rw [mem_ae_iff]
219+
simp [hc]
220+
#align ess_sup_smul_measure essSup_smul_measure
221+
222+
section TopologicalSpace
223+
224+
variable {γ : Type _} {mγ : MeasurableSpace γ} {f : α → γ} {g : γ → β}
225+
226+
theorem essSup_comp_le_essSup_map_measure (hf : AEMeasurable f μ) :
227+
essSup (g ∘ f) μ ≤ essSup g (Measure.map f μ) := by
228+
refine' limsSup_le_limsSup_of_le (fun t => _) (by isBoundedDefault) (by isBoundedDefault)
229+
simp_rw [Filter.mem_map]
230+
have : g ∘ f ⁻¹' t = f ⁻¹' (g ⁻¹' t) := by
231+
ext1 x
232+
simp_rw [Set.mem_preimage, Function.comp]
233+
rw [this]
234+
exact fun h => mem_ae_of_mem_ae_map hf h
235+
#align ess_sup_comp_le_ess_sup_map_measure essSup_comp_le_essSup_map_measure
236+
237+
theorem MeasurableEmbedding.essSup_map_measure (hf : MeasurableEmbedding f) :
238+
essSup g (Measure.map f μ) = essSup (g ∘ f) μ := by
239+
refine' le_antisymm _ (essSup_comp_le_essSup_map_measure hf.measurable.aemeasurable)
240+
refine' limsSup_le_limsSup (by isBoundedDefault) (by isBoundedDefault) (fun c h_le => _)
241+
rw [eventually_map] at h_le ⊢
242+
exact hf.ae_map_iff.mpr h_le
243+
#align measurable_embedding.ess_sup_map_measure MeasurableEmbedding.essSup_map_measure
244+
245+
variable [MeasurableSpace β] [TopologicalSpace β] [SecondCountableTopology β]
246+
[OrderClosedTopology β] [OpensMeasurableSpace β]
247+
248+
theorem essSup_map_measure_of_measurable (hg : Measurable g) (hf : AEMeasurable f μ) :
249+
essSup g (Measure.map f μ) = essSup (g ∘ f) μ := by
250+
refine' le_antisymm _ (essSup_comp_le_essSup_map_measure hf)
251+
refine' limsSup_le_limsSup (by isBoundedDefault) (by isBoundedDefault) (fun c h_le => _)
252+
rw [eventually_map] at h_le ⊢
253+
rw [ae_map_iff hf (measurableSet_le hg measurable_const)]
254+
exact h_le
255+
#align ess_sup_map_measure_of_measurable essSup_map_measure_of_measurable
256+
257+
theorem essSup_map_measure (hg : AEMeasurable g (Measure.map f μ)) (hf : AEMeasurable f μ) :
258+
essSup g (Measure.map f μ) = essSup (g ∘ f) μ := by
259+
rw [essSup_congr_ae hg.ae_eq_mk, essSup_map_measure_of_measurable hg.measurable_mk hf]
260+
refine' essSup_congr_ae _
261+
have h_eq := ae_of_ae_map hf hg.ae_eq_mk
262+
rw [← EventuallyEq] at h_eq
263+
exact h_eq.symm
264+
#align ess_sup_map_measure essSup_map_measure
265+
266+
end TopologicalSpace
267+
268+
end CompleteLattice
269+
270+
section CompleteLinearOrder
271+
272+
variable [CompleteLinearOrder β]
273+
theorem essSup_indicator_eq_essSup_restrict [Zero β] {s : Set α} {f : α → β}
274+
(hf : 0 ≤ᵐ[μ.restrict s] f) (hs : MeasurableSet s) (hs_not_null : μ s ≠ 0) :
275+
essSup (s.indicator f) μ = essSup f (μ.restrict s) := by
276+
refine'
277+
le_antisymm _
278+
(limsSup_le_limsSup_of_le (map_restrict_ae_le_map_indicator_ae hs)
279+
(by isBoundedDefault) (by isBoundedDefault) )
280+
refine' limsSup_le_limsSup (by isBoundedDefault) (by isBoundedDefault) (fun c h_restrict_le => _)
281+
rw [eventually_map] at h_restrict_le⊢
282+
rw [ae_restrict_iff' hs] at h_restrict_le
283+
have hc : 0 ≤ c := by
284+
rsuffices ⟨x, hx⟩ : ∃ x, 0 ≤ f x ∧ f x ≤ c
285+
exact hx.1.trans hx.2
286+
refine' Frequently.exists _
287+
· exact μ.ae
288+
rw [EventuallyLE, ae_restrict_iff' hs] at hf
289+
have hs' : ∃ᵐ x ∂μ, x ∈ s := by
290+
contrapose! hs_not_null
291+
rw [not_frequently, ae_iff] at hs_not_null
292+
suffices { a : α | ¬a ∉ s } = s by rwa [← this]
293+
simp
294+
refine' hs'.mp (hf.mp (h_restrict_le.mono fun x hxs_imp_c hxf_nonneg hxs => _))
295+
rw [Pi.zero_apply] at hxf_nonneg
296+
exact ⟨hxf_nonneg hxs, hxs_imp_c hxs⟩
297+
refine' h_restrict_le.mono fun x hxc => _
298+
by_cases hxs : x ∈ s
299+
· simpa [hxs] using hxc hxs
300+
· simpa [hxs] using hc
301+
#align ess_sup_indicator_eq_ess_sup_restrict essSup_indicator_eq_essSup_restrict
302+
303+
end CompleteLinearOrder
304+
305+
namespace ENNReal
306+
307+
variable {f : α → ℝ≥0∞}
308+
309+
theorem ae_le_essSup (f : α → ℝ≥0∞) : ∀ᵐ y ∂μ, f y ≤ essSup f μ :=
310+
eventually_le_limsup f
311+
#align ennreal.ae_le_ess_sup ENNReal.ae_le_essSup
312+
313+
@[simp]
314+
theorem essSup_eq_zero_iff : essSup f μ = 0 ↔ f =ᵐ[μ] 0 :=
315+
limsup_eq_zero_iff
316+
#align ennreal.ess_sup_eq_zero_iff ENNReal.essSup_eq_zero_iff
317+
318+
theorem essSup_const_mul {a : ℝ≥0∞} : essSup (fun x : α => a * f x) μ = a * essSup f μ :=
319+
limsup_const_mul
320+
#align ennreal.ess_sup_const_mul ENNReal.essSup_const_mul
321+
322+
theorem essSup_mul_le (f g : α → ℝ≥0∞) : essSup (f * g) μ ≤ essSup f μ * essSup g μ :=
323+
limsup_mul_le f g
324+
#align ennreal.ess_sup_mul_le ENNReal.essSup_mul_le
325+
326+
theorem essSup_add_le (f g : α → ℝ≥0∞) : essSup (f + g) μ ≤ essSup f μ + essSup g μ :=
327+
limsup_add_le f g
328+
#align ennreal.ess_sup_add_le ENNReal.essSup_add_le
329+
330+
theorem essSup_liminf_le {ι} [Countable ι] [LinearOrder ι] (f : ι → α → ℝ≥0∞) :
331+
essSup (fun x => atTop.liminf fun n => f n x) μ ≤
332+
atTop.liminf fun n => essSup (fun x => f n x) μ := by
333+
simp_rw [essSup]
334+
exact ENNReal.limsup_liminf_le_liminf_limsup fun a b => f b a
335+
#align ennreal.ess_sup_liminf_le ENNReal.essSup_liminf_le
336+
337+
theorem coe_essSup {f : α → ℝ≥0} (hf : IsBoundedUnder (· ≤ ·) μ.ae f) :
338+
((essSup f μ : ℝ≥0) : ℝ≥0∞) = essSup (fun x => (f x : ℝ≥0∞)) μ :=
339+
(ENNReal.coe_sInf <| hf).trans <|
340+
eq_of_forall_le_iff fun r => by
341+
simp [essSup, limsup, limsSup, eventually_map, ENNReal.forall_ennreal]; rfl
342+
#align ennreal.coe_ess_sup ENNReal.coe_essSup
343+
344+
end ENNReal

0 commit comments

Comments
 (0)