@@ -316,15 +316,17 @@ section DerivativesProperties
316
316
317
317
/-! ### Unique differentiability sets in manifolds -/
318
318
319
- variable {𝕜 : Type *} [NontriviallyNormedField 𝕜] {E : Type *} [NormedAddCommGroup E]
320
- [NormedSpace 𝕜 E] {H : Type *} [TopologicalSpace H] (I : ModelWithCorners 𝕜 E H) {M : Type *}
321
- [TopologicalSpace M] [ChartedSpace H M]
322
- --
323
- {E' : Type *}
324
- [NormedAddCommGroup E'] [NormedSpace 𝕜 E'] {H' : Type *} [TopologicalSpace H']
325
- {I' : ModelWithCorners 𝕜 E' H'} {M' : Type *} [TopologicalSpace M'] [ChartedSpace H' M']
326
- {E'' : Type *} [NormedAddCommGroup E''] [NormedSpace 𝕜 E''] {H'' : Type *} [TopologicalSpace H'']
327
- {I'' : ModelWithCorners 𝕜 E'' H''} {M'' : Type *} [TopologicalSpace M''] [ChartedSpace H'' M'']
319
+ variable
320
+ {𝕜 : Type *} [NontriviallyNormedField 𝕜]
321
+ {E : Type *} [NormedAddCommGroup E] [NormedSpace 𝕜 E]
322
+ {H : Type *} [TopologicalSpace H] (I : ModelWithCorners 𝕜 E H)
323
+ {M : Type *} [TopologicalSpace M] [ChartedSpace H M]
324
+ {E' : Type *} [NormedAddCommGroup E'] [NormedSpace 𝕜 E']
325
+ {H' : Type *} [TopologicalSpace H'] {I' : ModelWithCorners 𝕜 E' H'}
326
+ {M' : Type *} [TopologicalSpace M'] [ChartedSpace H' M']
327
+ {E'' : Type *} [NormedAddCommGroup E''] [NormedSpace 𝕜 E'']
328
+ {H'' : Type *} [TopologicalSpace H''] {I'' : ModelWithCorners 𝕜 E'' H''}
329
+ {M'' : Type *} [TopologicalSpace M''] [ChartedSpace H'' M'']
328
330
{f f₀ f₁ : M → M'} {x : M} {s t : Set M} {g : M' → M''} {u : Set M'}
329
331
330
332
theorem uniqueMDiffWithinAt_univ : UniqueMDiffWithinAt I univ x := by
@@ -1105,7 +1107,7 @@ alias ⟨HasMFDerivAt.hasFDerivAt, HasFDerivAt.hasMFDerivAt⟩ := hasMFDerivAt_i
1105
1107
#align has_mfderiv_at.has_fderiv_at HasMFDerivAt.hasFDerivAt
1106
1108
#align has_fderiv_at.has_mfderiv_at HasFDerivAt.hasMFDerivAt
1107
1109
1108
- /-- For maps between vector spaces, `MDifferentiableWithinAt` and `fdifferentiable_within_at `
1110
+ /-- For maps between vector spaces, `MDifferentiableWithinAt` and `DifferentiableWithinAt `
1109
1111
coincide -/
1110
1112
theorem mdifferentiableWithinAt_iff_differentiableWithinAt :
1111
1113
MDifferentiableWithinAt 𝓘(𝕜, E) 𝓘(𝕜, E') f s x ↔ DifferentiableWithinAt 𝕜 f s x := by
@@ -2021,7 +2023,7 @@ variable {𝕜 : Type*} [NontriviallyNormedField 𝕜] {E : Type*} [NormedAddCom
2021
2023
{I' : ModelWithCorners 𝕜 E' H'} {M' : Type *} [TopologicalSpace M'] [ChartedSpace H' M']
2022
2024
[SmoothManifoldWithCorners I' M'] {s : Set M}
2023
2025
2024
- /-- If `s` has the unique differential property at `x`, `f` is differetiable within `s` at x` and
2026
+ /-- If `s` has the unique differential property at `x`, `f` is differentiable within `s` at x` and
2025
2027
its derivative has Dense range, then `f '' s` has the Unique differential property at `f x`. -/
2026
2028
theorem UniqueMDiffWithinAt.image_denseRange (hs : UniqueMDiffWithinAt I s x)
2027
2029
{f : M → M'} {f' : E →L[𝕜] E'} (hf : HasMFDerivWithinAt I I' f s x f')
@@ -2035,7 +2037,7 @@ theorem UniqueMDiffWithinAt.image_denseRange (hs : UniqueMDiffWithinAt I s x)
2035
2037
rintro _ ⟨y, ⟨⟨hys, hfy⟩, -⟩, rfl⟩
2036
2038
exact ⟨⟨_, hys, ((extChartAt I' (f x)).left_inv hfy).symm⟩, mem_range_self _⟩
2037
2039
2038
- /-- If `s` has the unique differential, `f` is differetiable on `s` and its derivative at every
2040
+ /-- If `s` has the unique differential, `f` is differentiable on `s` and its derivative at every
2039
2041
point of `s` has dense range, then `f '' s` has the unique differential property. This version
2040
2042
uses `HaMFDerivWithinAt` predicate. -/
2041
2043
theorem UniqueMDiffOn.image_denseRange' (hs : UniqueMDiffOn I s) {f : M → M'}
@@ -2044,7 +2046,7 @@ theorem UniqueMDiffOn.image_denseRange' (hs : UniqueMDiffOn I s) {f : M → M'}
2044
2046
UniqueMDiffOn I' (f '' s) :=
2045
2047
ball_image_iff.2 fun x hx ↦ (hs x hx).image_denseRange (hf x hx) (hd x hx)
2046
2048
2047
- /-- If `s` has the unique differential, `f` is differetiable on `s` and its derivative at every
2049
+ /-- If `s` has the unique differential, `f` is differentiable on `s` and its derivative at every
2048
2050
point of `s` has dense range, then `f '' s` has the unique differential property. -/
2049
2051
theorem UniqueMDiffOn.image_denseRange (hs : UniqueMDiffOn I s) {f : M → M'}
2050
2052
(hf : MDifferentiableOn I I' f s) (hd : ∀ x ∈ s, DenseRange (mfderivWithin I I' f s x)) :
0 commit comments