@@ -33,8 +33,6 @@ We introduce the following notation for the lower Lebesgue integral of a functio
33
33
34
34
assert_not_exists NormedSpace
35
35
36
- set_option autoImplicit true
37
-
38
36
noncomputable section
39
37
40
38
open Set hiding restrict restrict_apply
@@ -815,11 +813,13 @@ theorem lintegral_indicator_one_le (s : Set α) : ∫⁻ a, s.indicator 1 a ∂
815
813
(lintegral_indicator_const_le _ _).trans <| (one_mul _).le
816
814
817
815
@[simp]
818
- theorem lintegral_indicator_one₀ (hs : NullMeasurableSet s μ) : ∫⁻ a, s.indicator 1 a ∂μ = μ s :=
816
+ theorem lintegral_indicator_one₀ {s : Set α} (hs : NullMeasurableSet s μ) :
817
+ ∫⁻ a, s.indicator 1 a ∂μ = μ s :=
819
818
(lintegral_indicator_const₀ hs _).trans <| one_mul _
820
819
821
820
@[simp]
822
- theorem lintegral_indicator_one (hs : MeasurableSet s) : ∫⁻ a, s.indicator 1 a ∂μ = μ s :=
821
+ theorem lintegral_indicator_one {s : Set α} (hs : MeasurableSet s) :
822
+ ∫⁻ a, s.indicator 1 a ∂μ = μ s :=
823
823
(lintegral_indicator_const hs _).trans <| one_mul _
824
824
#align measure_theory.lintegral_indicator_one MeasureTheory.lintegral_indicator_one
825
825
@@ -878,23 +878,25 @@ theorem lintegral_eq_top_of_measure_eq_top_ne_zero {f : α → ℝ≥0∞} (hf :
878
878
_ ≤ ∫⁻ x, f x ∂μ := mul_meas_ge_le_lintegral₀ hf ∞
879
879
#align measure_theory.lintegral_eq_top_of_measure_eq_top_ne_zero MeasureTheory.lintegral_eq_top_of_measure_eq_top_ne_zero
880
880
881
- theorem setLintegral_eq_top_of_measure_eq_top_ne_zero (hf : AEMeasurable f (μ.restrict s))
882
- (hμf : μ ({x ∈ s | f x = ∞}) ≠ 0 ) : ∫⁻ x in s, f x ∂μ = ∞ :=
881
+ theorem setLintegral_eq_top_of_measure_eq_top_ne_zero {f : α → ℝ≥0 ∞} {s : Set α}
882
+ (hf : AEMeasurable f (μ.restrict s)) (hμf : μ ({x ∈ s | f x = ∞}) ≠ 0 ) :
883
+ ∫⁻ x in s, f x ∂μ = ∞ :=
883
884
lintegral_eq_top_of_measure_eq_top_ne_zero hf <|
884
885
mt (eq_bot_mono <| by rw [← setOf_inter_eq_sep]; exact Measure.le_restrict_apply _ _) hμf
885
886
#align measure_theory.set_lintegral_eq_top_of_measure_eq_top_ne_zero MeasureTheory.setLintegral_eq_top_of_measure_eq_top_ne_zero
886
887
887
- theorem measure_eq_top_of_lintegral_ne_top (hf : AEMeasurable f μ) (hμf : ∫⁻ x, f x ∂μ ≠ ∞) :
888
- μ {x | f x = ∞} = 0 :=
888
+ theorem measure_eq_top_of_lintegral_ne_top {f : α → ℝ≥ 0 ∞}
889
+ (hf : AEMeasurable f μ) (hμf : ∫⁻ x, f x ∂μ ≠ ∞) : μ {x | f x = ∞} = 0 :=
889
890
of_not_not fun h => hμf <| lintegral_eq_top_of_measure_eq_top_ne_zero hf h
890
891
#align measure_theory.measure_eq_top_of_lintegral_ne_top MeasureTheory.measure_eq_top_of_lintegral_ne_top
891
892
892
- theorem measure_eq_top_of_setLintegral_ne_top (hf : AEMeasurable f (μ.restrict s))
893
- (hμf : ∫⁻ x in s, f x ∂μ ≠ ∞) : μ ({x ∈ s | f x = ∞}) = 0 :=
893
+ theorem measure_eq_top_of_setLintegral_ne_top {f : α → ℝ≥0 ∞} {s : Set α}
894
+ (hf : AEMeasurable f (μ.restrict s)) (hμf : ∫⁻ x in s, f x ∂μ ≠ ∞) :
895
+ μ ({x ∈ s | f x = ∞}) = 0 :=
894
896
of_not_not fun h => hμf <| setLintegral_eq_top_of_measure_eq_top_ne_zero hf h
895
897
#align measure_theory.measure_eq_top_of_set_lintegral_ne_top MeasureTheory.measure_eq_top_of_setLintegral_ne_top
896
898
897
- /-- **Markov's inequality** also known as **Chebyshev's first inequality** . -/
899
+ /-- **Markov's inequality** , also known as **Chebyshev's first inequality** . -/
898
900
theorem meas_ge_le_lintegral_div {f : α → ℝ≥0 ∞} (hf : AEMeasurable f μ) {ε : ℝ≥0 ∞} (hε : ε ≠ 0 )
899
901
(hε' : ε ≠ ∞) : μ { x | ε ≤ f x } ≤ (∫⁻ a, f a ∂μ) / ε :=
900
902
(ENNReal.le_div_iff_mul_le (Or.inl hε) (Or.inl hε')).2 <| by
0 commit comments