@@ -4,7 +4,7 @@ Released under Apache 2.0 license as described in the file LICENSE.
4
4
Authors: Mario Carneiro, Johannes Hölzl
5
5
6
6
! This file was ported from Lean 3 source module measure_theory.integral.lebesgue
7
- ! leanprover-community/mathlib commit bf6a01357ff5684b1ebcd0f1a13be314fc82c0bf
7
+ ! leanprover-community/mathlib commit c14c8fcde993801fca8946b0d80131a1a81d1520
8
8
! Please do not edit these lines, except to modify the commit id
9
9
! if you have ported upstream changes.
10
10
-/
@@ -46,7 +46,7 @@ namespace MeasureTheory
46
46
47
47
section MoveThis
48
48
49
- variable {α : Type _ } {mα : MeasurableSpace α} {a : α} {s : Set α}
49
+ variable {m : MeasurableSpace α } {μ ν : Measure α} {f : α → ℝ≥ 0 ∞ } {s : Set α}
50
50
51
51
-- todo after the port: move to measure_theory/measure/measure_space
52
52
theorem restrict_dirac' (hs : MeasurableSet s) [Decidable (a ∈ s)] :
@@ -805,6 +805,11 @@ theorem set_lintegral_eq_const {f : α → ℝ≥0∞} (hf : Measurable f) (r :
805
805
exact hf (measurableSet_singleton r)
806
806
#align measure_theory.set_lintegral_eq_const MeasureTheory.set_lintegral_eq_const
807
807
808
+ @[simp]
809
+ theorem lintegral_indicator_one (hs : MeasurableSet s) : ∫⁻ a, s.indicator 1 a ∂μ = μ s :=
810
+ (lintegral_indicator_const hs _).trans $ one_mul _
811
+ #align measure_theory.lintegral_indicator_one MeasureTheory.lintegral_indicator_one
812
+
808
813
/-- A version of **Markov's inequality** for two functions. It doesn't follow from the standard
809
814
Markov's inequality because we only assume measurability of `g`, not `f`. -/
810
815
theorem lintegral_add_mul_meas_add_le_le_lintegral {f g : α → ℝ≥0 ∞} (hle : f ≤ᵐ[μ] g)
@@ -839,13 +844,29 @@ theorem mul_meas_ge_le_lintegral {f : α → ℝ≥0∞} (hf : Measurable f) (ε
839
844
mul_meas_ge_le_lintegral₀ hf.aemeasurable ε
840
845
#align measure_theory.mul_meas_ge_le_lintegral MeasureTheory.mul_meas_ge_le_lintegral
841
846
842
- theorem lintegral_eq_top_of_measure_eq_top_pos {f : α → ℝ≥0 ∞} (hf : AEMeasurable f μ)
843
- (hμf : 0 < μ { x | f x = ∞ } ) : ∫⁻ x, f x ∂μ = ∞ :=
847
+ theorem lintegral_eq_top_of_measure_eq_top_ne_zero {f : α → ℝ≥0 ∞} (hf : AEMeasurable f μ)
848
+ (hμf : μ {x | f x = ∞} ≠ 0 ) : ∫⁻ x, f x ∂μ = ∞ :=
844
849
eq_top_iff.mpr <|
845
850
calc
846
- ∞ = ∞ * μ { x | ∞ ≤ f x } := by simp [mul_eq_top, hμf.ne.symm ]
851
+ ∞ = ∞ * μ { x | ∞ ≤ f x } := by simp [mul_eq_top, hμf]
847
852
_ ≤ ∫⁻ x, f x ∂μ := mul_meas_ge_le_lintegral₀ hf ∞
848
- #align measure_theory.lintegral_eq_top_of_measure_eq_top_pos MeasureTheory.lintegral_eq_top_of_measure_eq_top_pos
853
+ #align measure_theory.lintegral_eq_top_of_measure_eq_top_ne_zero MeasureTheory.lintegral_eq_top_of_measure_eq_top_ne_zero
854
+
855
+ theorem setLintegral_eq_top_of_measure_eq_top_ne_zero (hf : AEMeasurable f (μ.restrict s))
856
+ (hμf : μ ({x ∈ s | f x = ∞}) ≠ 0 ) : ∫⁻ x in s, f x ∂μ = ∞ :=
857
+ lintegral_eq_top_of_measure_eq_top_ne_zero hf $
858
+ mt (eq_bot_mono $ by rw [←setOf_inter_eq_sep]; exact Measure.le_restrict_apply _ _) hμf
859
+ #align measure_theory.set_lintegral_eq_top_of_measure_eq_top_ne_zero MeasureTheory.setLintegral_eq_top_of_measure_eq_top_ne_zero
860
+
861
+ theorem measure_eq_top_of_lintegral_ne_top (hf : AEMeasurable f μ) (hμf : ∫⁻ x, f x ∂μ ≠ ∞) :
862
+ μ {x | f x = ∞} = 0 :=
863
+ of_not_not fun h => hμf <| lintegral_eq_top_of_measure_eq_top_ne_zero hf h
864
+ #align measure_theory.measure_eq_top_of_lintegral_ne_top MeasureTheory.measure_eq_top_of_lintegral_ne_top
865
+
866
+ theorem measure_eq_top_of_setLintegral_ne_top (hf : AEMeasurable f (μ.restrict s))
867
+ (hμf : ∫⁻ x in s, f x ∂μ ≠ ∞) : μ ({x ∈ s | f x = ∞}) = 0 :=
868
+ of_not_not fun h => hμf $ setLintegral_eq_top_of_measure_eq_top_ne_zero hf h
869
+ #align measure_theory.measure_eq_top_of_set_lintegral_ne_top MeasureTheory.measure_eq_top_of_setLintegral_ne_top
849
870
850
871
/-- **Markov's inequality** also known as **Chebyshev's first inequality** . -/
851
872
theorem meas_ge_le_lintegral_div {f : α → ℝ≥0 ∞} (hf : AEMeasurable f μ) {ε : ℝ≥0 ∞} (hε : ε ≠ 0 )
0 commit comments