@@ -127,7 +127,7 @@ theorem AnalyticAt.meromorphicNFAt (hf : AnalyticAt 𝕜 f x) :
127
127
128
128
/-- Meromorphic functions have normal form outside of a discrete subset in the domain of
129
129
meromorphicity. -/
130
- theorem MeromorphicOn.meromorphicNFAt_mem_codiscreteWithin [CompleteSpace E] {U : Set 𝕜}
130
+ theorem MeromorphicOn.meromorphicNFAt_mem_codiscreteWithin {U : Set 𝕜}
131
131
(hf : MeromorphicOn f U) :
132
132
{ x | MeromorphicNFAt f x } ∈ Filter.codiscreteWithin U := by
133
133
filter_upwards [hf.analyticAt_mem_codiscreteWithin] with _ ha
@@ -171,7 +171,7 @@ theorem MeromorphicNFAt.order_eq_zero_iff (hf : MeromorphicNFAt f x) :
171
171
/-- **Local identity theorem** : two meromorphic functions in normal form agree in a
172
172
neighborhood iff they agree in a pointed neighborhood.
173
173
174
- See `ContinuousAt.eventuallyEq_nhdNE_iff_eventuallyEq_nhd ` for the analogous
174
+ See `ContinuousAt.eventuallyEq_nhd_iff_eventuallyEq_nhdNE ` for the analogous
175
175
statement for continuous functions.
176
176
-/
177
177
theorem MeromorphicNFAt.eventuallyEq_nhdNE_iff_eventuallyEq_nhd {g : 𝕜 → E}
@@ -427,7 +427,7 @@ theorem MeromorphicNFOn.meromorphicOn (hf : MeromorphicNFOn f U) :
427
427
If a function is meromorphic in normal form on `U`, then its divisor is
428
428
non-negative iff it is analytic.
429
429
-/
430
- theorem MeromorphicNFOn.divisor_nonneg_iff_analyticOnNhd [CompleteSpace E]
430
+ theorem MeromorphicNFOn.divisor_nonneg_iff_analyticOnNhd
431
431
(h₁f : MeromorphicNFOn f U) :
432
432
0 ≤ MeromorphicOn.divisor f U ↔ AnalyticOnNhd 𝕜 f U := by
433
433
constructor <;> intro h x
@@ -455,7 +455,7 @@ theorem AnalyticOnNhd.meromorphicNFOn (h₁f : AnalyticOnNhd 𝕜 f U) :
455
455
If `f` is meromorphic in normal form on `U` and nowhere locally constant zero,
456
456
then its zero set equals the support of the associated divisor.
457
457
-/
458
- theorem MeromorphicNFOn.zero_set_eq_divisor_support [CompleteSpace E] (h₁f : MeromorphicNFOn f U)
458
+ theorem MeromorphicNFOn.zero_set_eq_divisor_support (h₁f : MeromorphicNFOn f U)
459
459
(h₂f : ∀ u : U, (h₁f u.2 ).meromorphicAt.order ≠ ⊤) :
460
460
U ∩ f⁻¹' {0 } = Function.support (MeromorphicOn.divisor f U) := by
461
461
ext u
@@ -559,7 +559,7 @@ Conversion to normal form on `U` does not change values outside of `U`.
559
559
Conversion to normal form on `U` changes the value only along a discrete subset
560
560
of `U`.
561
561
-/
562
- theorem toMeromorphicNFOn_eqOn_codiscrete [CompleteSpace E] (hf : MeromorphicOn f U) :
562
+ theorem toMeromorphicNFOn_eqOn_codiscrete (hf : MeromorphicOn f U) :
563
563
f =ᶠ[Filter.codiscreteWithin U] toMeromorphicNFOn f U := by
564
564
have : U ∈ Filter.codiscreteWithin U := by
565
565
simp [mem_codiscreteWithin.2 ]
@@ -570,17 +570,20 @@ theorem toMeromorphicNFOn_eqOn_codiscrete [CompleteSpace E] (hf : MeromorphicOn
570
570
If `f` is meromorphic on `U` and `x ∈ U`, then `f` and its conversion to normal
571
571
form on `U` agree in a punctured neighborhood of `x`.
572
572
-/
573
- theorem MeromorphicOn.toMeromorphicNFOn_eq_self_on_nhdNE [CompleteSpace E]
573
+ theorem MeromorphicOn.toMeromorphicNFOn_eq_self_on_nhdNE
574
574
(hf : MeromorphicOn f U) (hx : x ∈ U) :
575
575
toMeromorphicNFOn f U =ᶠ[𝓝[≠] x] f := by
576
- filter_upwards [(hf x hx).eventually_analyticAt] with a ha
577
- simp [toMeromorphicNFOn, hf, ← (toMeromorphicNFAt_eq_self.2 ha.meromorphicNFAt).symm]
576
+ filter_upwards [hf.eventually_analyticAt_or_mem_compl hx] with a ha
577
+ rcases ha with ha | ha
578
+ · simp [toMeromorphicNFOn, hf, ← (toMeromorphicNFAt_eq_self.2 ha.meromorphicNFAt).symm]
579
+ · simp only [Set.mem_compl_iff] at ha
580
+ simp [toMeromorphicNFOn, ha, hf]
578
581
579
582
/--
580
583
If `f` is meromorphic on `U` and `x ∈ U`, then conversion to normal form at `x`
581
584
and conversion to normal form on `U` agree in a neighborhood of `x`.
582
585
-/
583
- theorem toMeromorphicNFOn_eq_toMeromorphicNFAt_on_nhd [CompleteSpace E] (hf : MeromorphicOn f U)
586
+ theorem toMeromorphicNFOn_eq_toMeromorphicNFAt_on_nhd (hf : MeromorphicOn f U)
584
587
(hx : x ∈ U) :
585
588
toMeromorphicNFOn f U =ᶠ[𝓝 x] toMeromorphicNFAt f x := by
586
589
apply eventuallyEq_nhds_of_eventuallyEq_nhdsNE
@@ -591,7 +594,7 @@ theorem toMeromorphicNFOn_eq_toMeromorphicNFAt_on_nhd [CompleteSpace E] (hf : Me
591
594
If `f` is meromorphic on `U` and `x ∈ U`, then conversion to normal form at `x`
592
595
and conversion to normal form on `U` agree at `x`.
593
596
-/
594
- theorem toMeromorphicNFOn_eq_toMeromorphicNFAt [CompleteSpace E] (hf : MeromorphicOn f U)
597
+ theorem toMeromorphicNFOn_eq_toMeromorphicNFAt (hf : MeromorphicOn f U)
595
598
(hx : x ∈ U) :
596
599
toMeromorphicNFOn f U x = toMeromorphicNFAt f x x := by
597
600
apply Filter.EventuallyEq.eq_of_nhds (g := toMeromorphicNFAt f x)
@@ -601,7 +604,7 @@ variable (f U) in
601
604
/--
602
605
After conversion to normal form on `U`, the function has normal form.
603
606
-/
604
- theorem meromorphicNFOn_toMeromorphicNFOn [CompleteSpace E] :
607
+ theorem meromorphicNFOn_toMeromorphicNFOn :
605
608
MeromorphicNFOn (toMeromorphicNFOn f U) U := by
606
609
by_cases hf : MeromorphicOn f U
607
610
· intro z hz
@@ -614,7 +617,7 @@ theorem meromorphicNFOn_toMeromorphicNFOn [CompleteSpace E] :
614
617
/--
615
618
If `f` has normal form on `U`, then `f` equals `toMeromorphicNFOn f U`.
616
619
-/
617
- @[simp] theorem toMeromorphicNFOn_eq_self [CompleteSpace E] :
620
+ @[simp] theorem toMeromorphicNFOn_eq_self :
618
621
toMeromorphicNFOn f U = f ↔ MeromorphicNFOn f U := by
619
622
constructor <;> intro h
620
623
· rw [h.symm]
@@ -628,16 +631,15 @@ If `f` has normal form on `U`, then `f` equals `toMeromorphicNFOn f U`.
628
631
/--
629
632
Conversion of normal form does not affect orders.
630
633
-/
631
- @[simp] theorem order_toMeromorphicNFOn [CompleteSpace E] (hf : MeromorphicOn f U) (hx : x ∈ U) :
634
+ @[simp] theorem order_toMeromorphicNFOn (hf : MeromorphicOn f U) (hx : x ∈ U) :
632
635
((meromorphicNFOn_toMeromorphicNFOn f U) hx).meromorphicAt.order = (hf x hx).order := by
633
636
apply MeromorphicAt.order_congr
634
637
exact hf.toMeromorphicNFOn_eq_self_on_nhdNE hx
635
638
636
639
/--
637
640
Conversion of normal form does not affect divisors.
638
641
-/
639
- @[simp] theorem MeromorphicOn.divisor_of_toMeromorphicNFOn [CompleteSpace E]
640
- (hf : MeromorphicOn f U) :
642
+ @[simp] theorem MeromorphicOn.divisor_of_toMeromorphicNFOn (hf : MeromorphicOn f U) :
641
643
divisor (toMeromorphicNFOn f U) U = divisor f U := by
642
644
ext z
643
645
by_cases hz : z ∈ U <;> simp [hf, (meromorphicNFOn_toMeromorphicNFOn f U).meromorphicOn, hz]
0 commit comments