Skip to content

Commit 4fb35bf

Browse files
committed
feat(Order/Basic): PartialOrder.ext_lt (#19724)
Two partial / linear orders with the same `<` relation are the same.
1 parent 410afe3 commit 4fb35bf

File tree

1 file changed

+9
-0
lines changed

1 file changed

+9
-0
lines changed

Mathlib/Order/Basic.lean

Lines changed: 9 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -529,11 +529,20 @@ theorem PartialOrder.ext {A B : PartialOrder α}
529529
ext x y
530530
exact H x y
531531

532+
theorem PartialOrder.ext_lt {A B : PartialOrder α}
533+
(H : ∀ x y : α, (haveI := A; x < y) ↔ x < y) : A = B := by
534+
ext x y
535+
rw [le_iff_lt_or_eq, @le_iff_lt_or_eq _ A, H]
536+
532537
theorem LinearOrder.ext {A B : LinearOrder α}
533538
(H : ∀ x y : α, (haveI := A; x ≤ y) ↔ x ≤ y) : A = B := by
534539
ext x y
535540
exact H x y
536541

542+
theorem LinearOrder.ext_lt {A B : LinearOrder α}
543+
(H : ∀ x y : α, (haveI := A; x < y) ↔ x < y) : A = B :=
544+
LinearOrder.toPartialOrder_injective (PartialOrder.ext_lt H)
545+
537546
/-- Given a relation `R` on `β` and a function `f : α → β`, the preimage relation on `α` is defined
538547
by `x ≤ y ↔ f x ≤ f y`. It is the unique relation on `α` making `f` a `RelEmbedding` (assuming `f`
539548
is injective). -/

0 commit comments

Comments
 (0)