Skip to content

Commit 51ee739

Browse files
committed
feat(Inseparable): Prod.map mk mk is a quotient map (#12327)
This is needed to prove continuity of binary arithmetic operations on the separation quotient.
1 parent d3917c3 commit 51ee739

File tree

1 file changed

+10
-0
lines changed

1 file changed

+10
-0
lines changed

Mathlib/Topology/Inseparable.lean

Lines changed: 10 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -489,6 +489,16 @@ theorem map_mk_nhdsWithin_preimage (s : Set (SeparationQuotient X)) (x : X) :
489489
rw [nhdsWithin, ← comap_principal, Filter.push_pull, nhdsWithin, map_mk_nhds]
490490
#align separation_quotient.map_mk_nhds_within_preimage SeparationQuotient.map_mk_nhdsWithin_preimage
491491

492+
/-- The map `(x, y) ↦ (mk x, mk y)` is a quotient map. -/
493+
theorem quotientMap_prodMap_mk : QuotientMap (Prod.map mk mk : X × Y → _) := by
494+
have hsurj : Surjective (Prod.map mk mk : X × Y → _) := surjective_mk.Prod_map surjective_mk
495+
refine quotientMap_iff.2 ⟨hsurj, fun s ↦ ?_⟩
496+
refine ⟨fun hs ↦ hs.preimage (continuous_mk.prod_map continuous_mk), fun hs ↦ ?_⟩
497+
refine isOpen_iff_mem_nhds.2 <| hsurj.forall.2 fun (x, y) h ↦ ?_
498+
rw [Prod.map_mk, nhds_prod_eq, ← map_mk_nhds, ← map_mk_nhds, Filter.prod_map_map_eq',
499+
← nhds_prod_eq, Filter.mem_map]
500+
exact hs.mem_nhds h
501+
492502
/-- Lift a map `f : X → α` such that `Inseparable x y → f x = f y` to a map
493503
`SeparationQuotient X → α`. -/
494504
def lift (f : X → α) (hf : ∀ x y, (x ~ᵢ y) → f x = f y) : SeparationQuotient X → α := fun x =>

0 commit comments

Comments
 (0)