@@ -214,17 +214,13 @@ instance decidableMem' [DecidableEq α] (a : α) (s : Finset α) : Decidable (a
214
214
215
215
/-! ### extensionality -/
216
216
217
-
218
- theorem ext_iff {s₁ s₂ : Finset α} : s₁ = s₂ ↔ ∀ a, a ∈ s₁ ↔ a ∈ s₂ :=
219
- val_inj.symm.trans <| s₁.nodup.ext s₂.nodup
220
-
221
217
@[ext]
222
- theorem ext {s₁ s₂ : Finset α} : ( ∀ a, a ∈ s₁ ↔ a ∈ s₂) → s₁ = s₂ :=
223
- ext_iff. 2
218
+ theorem ext {s₁ s₂ : Finset α} (h : ∀ a, a ∈ s₁ ↔ a ∈ s₂) : s₁ = s₂ :=
219
+ (val_inj.symm.trans <| s₁.nodup.ext s₂.nodup).mpr h
224
220
225
221
@[simp, norm_cast]
226
222
theorem coe_inj {s₁ s₂ : Finset α} : (s₁ : Set α) = s₂ ↔ s₁ = s₂ :=
227
- Set.ext_iff.trans ext_iff.symm
223
+ Set.ext_iff.trans Finset. ext_iff.symm
228
224
229
225
theorem coe_injective {α} : Injective ((↑) : Finset α → Set α) := fun _s _t => coe_inj.1
230
226
@@ -1764,11 +1760,11 @@ theorem inter_sdiff_self (s₁ s₂ : Finset α) : s₁ ∩ (s₂ \ s₁) = ∅
1764
1760
1765
1761
instance : GeneralizedBooleanAlgebra (Finset α) :=
1766
1762
{ sup_inf_sdiff := fun x y => by
1767
- simp only [ext_iff, mem_union, mem_sdiff, inf_eq_inter, sup_eq_union, mem_inter,
1763
+ simp only [Finset. ext_iff, mem_union, mem_sdiff, inf_eq_inter, sup_eq_union, mem_inter,
1768
1764
← and_or_left, em, and_true, implies_true]
1769
1765
inf_inf_sdiff := fun x y => by
1770
- simp only [ext_iff, inter_sdiff_self, inter_empty, inter_assoc, false_iff_iff, inf_eq_inter ,
1771
- not_mem_empty, bot_eq_empty, not_false_iff, implies_true] }
1766
+ simp only [Finset. ext_iff, inter_sdiff_self, inter_empty, inter_assoc, false_iff_iff,
1767
+ inf_eq_inter, not_mem_empty, bot_eq_empty, not_false_iff, implies_true] }
1772
1768
1773
1769
theorem not_mem_sdiff_of_mem_right (h : a ∈ t) : a ∉ s \ t := by
1774
1770
simp only [mem_sdiff, h, not_true, not_false_iff, and_false_iff]
@@ -2493,9 +2489,11 @@ theorem filter_union_filter_neg_eq [∀ x, Decidable (¬p x)] (s : Finset α) :
2493
2489
2494
2490
end
2495
2491
2496
- lemma filter_inj : s.filter p = t.filter p ↔ ∀ ⦃a⦄, p a → (a ∈ s ↔ a ∈ t) := by simp [ext_iff]
2492
+ lemma filter_inj : s.filter p = t.filter p ↔ ∀ ⦃a⦄, p a → (a ∈ s ↔ a ∈ t) := by
2493
+ simp [Finset.ext_iff]
2497
2494
2498
- lemma filter_inj' : s.filter p = s.filter q ↔ ∀ ⦃a⦄, a ∈ s → (p a ↔ q a) := by simp [ext_iff]
2495
+ lemma filter_inj' : s.filter p = s.filter q ↔ ∀ ⦃a⦄, a ∈ s → (p a ↔ q a) := by
2496
+ simp [Finset.ext_iff]
2499
2497
2500
2498
end Filter
2501
2499
0 commit comments