@@ -135,7 +135,7 @@ variable {X} {Y}
135
135
136
136
/-- The alternating face map complex, on morphisms -/
137
137
def map (f : X ⟶ Y) : obj X ⟶ obj Y :=
138
- ChainComplex.ofHom _ _ _ _ _ _ (fun n => f.app (op [n] )) fun n => by
138
+ ChainComplex.ofHom _ _ _ _ _ _ (fun n => f.app (op ⦋n⦌ )) fun n => by
139
139
dsimp
140
140
rw [comp_sum, sum_comp]
141
141
refine Finset.sum_congr rfl fun _ _ => ?_
@@ -145,7 +145,7 @@ def map (f : X ⟶ Y) : obj X ⟶ obj Y :=
145
145
apply f.naturality
146
146
147
147
@[simp]
148
- theorem map_f (f : X ⟶ Y) (n : ℕ) : (map f).f n = f.app (op [n] ) :=
148
+ theorem map_f (f : X ⟶ Y) (n : ℕ) : (map f).f n = f.app (op ⦋n⦌ ) :=
149
149
rfl
150
150
151
151
end AlternatingFaceMapComplex
@@ -172,7 +172,7 @@ theorem alternatingFaceMapComplex_obj_d (X : SimplicialObject C) (n : ℕ) :
172
172
173
173
@[simp]
174
174
theorem alternatingFaceMapComplex_map_f {X Y : SimplicialObject C} (f : X ⟶ Y) (n : ℕ) :
175
- ((alternatingFaceMapComplex C).map f).f n = f.app (op [n] ) :=
175
+ ((alternatingFaceMapComplex C).map f).f n = f.app (op ⦋n⦌ ) :=
176
176
rfl
177
177
178
178
theorem map_alternatingFaceMapComplex {D : Type *} [Category D] [Preadditive D] (F : C ⥤ D)
@@ -198,7 +198,7 @@ theorem map_alternatingFaceMapComplex {D : Type*} [Category D] [Preadditive D] (
198
198
199
199
theorem karoubi_alternatingFaceMapComplex_d (P : Karoubi (SimplicialObject C)) (n : ℕ) :
200
200
((AlternatingFaceMapComplex.obj (KaroubiFunctorCategoryEmbedding.obj P)).d (n + 1 ) n).f =
201
- P.p.app (op [ n + 1 ] ) ≫ (AlternatingFaceMapComplex.obj P.X).d (n + 1 ) n := by
201
+ P.p.app (op ⦋ n + 1 ⦌ ) ≫ (AlternatingFaceMapComplex.obj P.X).d (n + 1 ) n := by
202
202
dsimp
203
203
simp only [AlternatingFaceMapComplex.obj_d_eq, Karoubi.sum_hom, Preadditive.comp_sum,
204
204
Karoubi.zsmul_hom, Preadditive.comp_zsmul]
@@ -221,7 +221,7 @@ def ε [Limits.HasZeroObject C] :
221
221
SimplicialObject.Augmented.point ⋙ ChainComplex.single₀ C where
222
222
app X := by
223
223
refine (ChainComplex.toSingle₀Equiv _ _).symm ?_
224
- refine ⟨X.hom.app (op [ 0 ] ), ?_⟩
224
+ refine ⟨X.hom.app (op ⦋ 0 ⦌ ), ?_⟩
225
225
dsimp
226
226
rw [alternatingFaceMapComplex_obj_d, objD, Fin.sum_univ_two, Fin.val_zero,
227
227
pow_zero, one_smul, Fin.val_one, pow_one, neg_smul, one_smul, add_comp,
@@ -237,7 +237,7 @@ def ε [Limits.HasZeroObject C] :
237
237
238
238
@[simp]
239
239
lemma ε_app_f_zero [Limits.HasZeroObject C] (X : SimplicialObject.Augmented C) :
240
- (ε.app X).f 0 = X.hom.app (op [ 0 ] ) :=
240
+ (ε.app X).f 0 = X.hom.app (op ⦋ 0 ⦌ ) :=
241
241
ChainComplex.toSingle₀Equiv_symm_apply_f_zero _ _
242
242
243
243
@[simp]
@@ -296,7 +296,7 @@ variable (X Y : CosimplicialObject C)
296
296
/-- The differential on the alternating coface map complex is the alternate
297
297
sum of the coface maps -/
298
298
@[simp]
299
- def objD (n : ℕ) : X.obj [n] ⟶ X.obj [ n + 1 ] :=
299
+ def objD (n : ℕ) : X.obj ⦋n⦌ ⟶ X.obj ⦋ n + 1 ⦌ :=
300
300
∑ i : Fin (n + 2 ), (-1 : ℤ) ^ (i : ℕ) • X.δ i
301
301
302
302
theorem d_eq_unop_d (n : ℕ) :
@@ -311,14 +311,14 @@ theorem d_squared (n : ℕ) : objD X n ≫ objD X (n + 1) = 0 := by
311
311
312
312
/-- The alternating coface map complex, on objects -/
313
313
def obj : CochainComplex C ℕ :=
314
- CochainComplex.of (fun n => X.obj [n] ) (objD X) (d_squared X)
314
+ CochainComplex.of (fun n => X.obj ⦋n⦌ ) (objD X) (d_squared X)
315
315
316
316
variable {X} {Y}
317
317
318
318
/-- The alternating face map complex, on morphisms -/
319
319
@[simp]
320
320
def map (f : X ⟶ Y) : obj X ⟶ obj Y :=
321
- CochainComplex.ofHom _ _ _ _ _ _ (fun n => f.app [n] ) fun n => by
321
+ CochainComplex.ofHom _ _ _ _ _ _ (fun n => f.app ⦋n⦌ ) fun n => by
322
322
dsimp
323
323
rw [comp_sum, sum_comp]
324
324
refine Finset.sum_congr rfl fun x _ => ?_
0 commit comments