@@ -568,7 +568,7 @@ instance : skeletalFunctor.Faithful where
568
568
569
569
instance : skeletalFunctor.EssSurj where
570
570
mem_essImage X :=
571
- ⟨mk (Fintype.card X - 1 : ℕ),
571
+ ⟨⦋ (Fintype.card X - 1 : ℕ)⦌ ,
572
572
⟨by
573
573
have aux : Fintype.card X = Fintype.card X - 1 + 1 :=
574
574
(Nat.succ_pred_eq_of_pos <| Fintype.card_pos_iff.mpr ⟨⊥⟩).symm
@@ -732,9 +732,9 @@ theorem iso_eq_iso_refl {x : SimplexCategory} (e : x ≅ x) : e = Iso.refl x :=
732
732
theorem eq_id_of_isIso {x : SimplexCategory} (f : x ⟶ x) [IsIso f] : f = 𝟙 _ :=
733
733
congr_arg (fun φ : _ ≅ _ => φ.hom) (iso_eq_iso_refl (asIso f))
734
734
735
- theorem eq_σ_comp_of_not_injective' {n : ℕ} {Δ' : SimplexCategory} (θ : mk ( n + 1 ) ⟶ Δ')
735
+ theorem eq_σ_comp_of_not_injective' {n : ℕ} {Δ' : SimplexCategory} (θ : ⦋ n + 1 ⦌ ⟶ Δ')
736
736
(i : Fin (n + 1 )) (hi : θ.toOrderHom (Fin.castSucc i) = θ.toOrderHom i.succ) :
737
- ∃ θ' : mk n ⟶ Δ', θ = σ i ≫ θ' := by
737
+ ∃ θ' : ⦋n⦌ ⟶ Δ', θ = σ i ≫ θ' := by
738
738
use δ i.succ ≫ θ
739
739
ext x : 3
740
740
simp only [len_mk, σ, mkHom, comp_toOrderHom, Hom.toOrderHom_mk, OrderHom.comp_coe,
@@ -763,9 +763,9 @@ theorem eq_σ_comp_of_not_injective' {n : ℕ} {Δ' : SimplexCategory} (θ : mk
763
763
Nat.lt_succ_iff, Fin.ext_iff] at h' h'' ⊢
764
764
omega
765
765
766
- theorem eq_σ_comp_of_not_injective {n : ℕ} {Δ' : SimplexCategory} (θ : mk ( n + 1 ) ⟶ Δ')
766
+ theorem eq_σ_comp_of_not_injective {n : ℕ} {Δ' : SimplexCategory} (θ : ⦋ n + 1 ⦌ ⟶ Δ')
767
767
(hθ : ¬Function.Injective θ.toOrderHom) :
768
- ∃ (i : Fin (n + 1 )) (θ' : mk n ⟶ Δ'), θ = σ i ≫ θ' := by
768
+ ∃ (i : Fin (n + 1 )) (θ' : ⦋n⦌ ⟶ Δ'), θ = σ i ≫ θ' := by
769
769
simp only [Function.Injective, exists_prop, not_forall] at hθ
770
770
-- as θ is not injective, there exists `x<y` such that `θ x = θ y`
771
771
-- and then, `θ x = θ (x+1)`
@@ -783,8 +783,8 @@ theorem eq_σ_comp_of_not_injective {n : ℕ} {Δ' : SimplexCategory} (θ : mk (
783
783
· rw [Fin.castSucc_castPred, h₁]
784
784
exact θ.toOrderHom.monotone ((Fin.succ_castPred_le_iff _).mpr h₂)
785
785
786
- theorem eq_comp_δ_of_not_surjective' {n : ℕ} {Δ : SimplexCategory} (θ : Δ ⟶ mk ( n + 1 ) )
787
- (i : Fin (n + 2 )) (hi : ∀ x, θ.toOrderHom x ≠ i) : ∃ θ' : Δ ⟶ mk n , θ = θ' ≫ δ i := by
786
+ theorem eq_comp_δ_of_not_surjective' {n : ℕ} {Δ : SimplexCategory} (θ : Δ ⟶ ⦋ n + 1 ⦌ )
787
+ (i : Fin (n + 2 )) (hi : ∀ x, θ.toOrderHom x ≠ i) : ∃ θ' : Δ ⟶ ⦋n⦌ , θ = θ' ≫ δ i := by
788
788
use θ ≫ σ (.predAbove (.last n) i)
789
789
ext x : 3
790
790
suffices ∀ j ≠ i, i.succAbove (((Fin.last n).predAbove i).predAbove j) = j by
@@ -793,9 +793,9 @@ theorem eq_comp_δ_of_not_surjective' {n : ℕ} {Δ : SimplexCategory} (θ : Δ
793
793
intro j hj
794
794
cases i using Fin.lastCases <;> simp [hj]
795
795
796
- theorem eq_comp_δ_of_not_surjective {n : ℕ} {Δ : SimplexCategory} (θ : Δ ⟶ mk ( n + 1 ) )
796
+ theorem eq_comp_δ_of_not_surjective {n : ℕ} {Δ : SimplexCategory} (θ : Δ ⟶ ⦋ n + 1 ⦌ )
797
797
(hθ : ¬Function.Surjective θ.toOrderHom) :
798
- ∃ (i : Fin (n + 2 )) (θ' : Δ ⟶ mk n ), θ = θ' ≫ δ i := by
798
+ ∃ (i : Fin (n + 2 )) (θ' : Δ ⟶ ⦋n⦌ ), θ = θ' ≫ δ i := by
799
799
obtain ⟨i, hi⟩ := not_forall.mp hθ
800
800
use i
801
801
exact eq_comp_δ_of_not_surjective' θ i (not_exists.mp hi)
@@ -817,7 +817,7 @@ theorem eq_id_of_epi {x : SimplexCategory} (i : x ⟶ x) [Epi i] : i = 𝟙 _ :=
817
817
eq_self_iff_true, and_true]
818
818
infer_instance
819
819
820
- theorem eq_σ_of_epi {n : ℕ} (θ : mk ( n + 1 ) ⟶ mk n ) [Epi θ] : ∃ i : Fin (n + 1 ), θ = σ i := by
820
+ theorem eq_σ_of_epi {n : ℕ} (θ : ⦋ n + 1 ⦌ ⟶ ⦋n⦌ ) [Epi θ] : ∃ i : Fin (n + 1 ), θ = σ i := by
821
821
rcases eq_σ_comp_of_not_injective θ (by
822
822
by_contra h
823
823
simpa using le_of_mono (mono_iff_injective.mpr h)) with ⟨i, θ', h⟩
@@ -828,7 +828,7 @@ theorem eq_σ_of_epi {n : ℕ} (θ : mk (n + 1) ⟶ mk n) [Epi θ] : ∃ i : Fin
828
828
haveI := CategoryTheory.epi_of_epi (σ i) θ'
829
829
rw [h, eq_id_of_epi θ', Category.comp_id]
830
830
831
- theorem eq_δ_of_mono {n : ℕ} (θ : mk n ⟶ mk ( n + 1 ) ) [Mono θ] : ∃ i : Fin (n + 2 ), θ = δ i := by
831
+ theorem eq_δ_of_mono {n : ℕ} (θ : ⦋n⦌ ⟶ ⦋ n + 1 ⦌ ) [Mono θ] : ∃ i : Fin (n + 2 ), θ = δ i := by
832
832
rcases eq_comp_δ_of_not_surjective θ (by
833
833
by_contra h
834
834
simpa using le_of_epi (epi_iff_surjective.mpr h)) with ⟨i, θ', h⟩
0 commit comments