File tree Expand file tree Collapse file tree 2 files changed +30
-0
lines changed Expand file tree Collapse file tree 2 files changed +30
-0
lines changed Original file line number Diff line number Diff line change @@ -2237,6 +2237,7 @@ import Mathlib.Logic.Relator
2237
2237
import Mathlib.Logic.Small.Basic
2238
2238
import Mathlib.Logic.Small.Group
2239
2239
import Mathlib.Logic.Small.List
2240
+ import Mathlib.Logic.Small.Module
2240
2241
import Mathlib.Logic.Small.Ring
2241
2242
import Mathlib.Logic.Unique
2242
2243
import Mathlib.Logic.UnivLE
Original file line number Diff line number Diff line change
1
+ /-
2
+ Copyright (c) 2021 Scott Morrison. All rights reserved.
3
+ Released under Apache 2.0 license as described in the file LICENSE.
4
+ Authors: Scott Morrison
5
+ -/
6
+ import Mathlib.Logic.Small.Group
7
+ import Mathlib.Logic.Small.Ring
8
+
9
+ /-!
10
+ # Transfer module and algebra structures from `α` to `Shrink α`.
11
+ -/
12
+
13
+ noncomputable section
14
+
15
+ instance [Semiring α] [AddCommMonoid β] [Module α β] [Small β] : Module α (Shrink β) :=
16
+ (equivShrink _).symm.module α
17
+
18
+ /-- A small module is linearly equivalent to its small model. -/
19
+ def linearEquivShrink (α β) [Semiring α] [AddCommMonoid β] [Module α β] [Small β] :
20
+ β ≃ₗ[α] Shrink β :=
21
+ ((equivShrink β).symm.linearEquiv α).symm
22
+
23
+ instance [CommSemiring α] [Semiring β] [Algebra α β] [Small β] : Algebra α (Shrink β) :=
24
+ (equivShrink _).symm.algebra α
25
+
26
+ /-- A small algebra is algebra equivalent to its small model. -/
27
+ def algEquivShrink (α β) [CommSemiring α] [Semiring β] [Algebra α β] [Small β] :
28
+ β ≃ₐ[α] Shrink β :=
29
+ ((equivShrink β).symm.algEquiv α).symm
You can’t perform that action at this time.
0 commit comments