Skip to content

Commit 5af5db0

Browse files
committed
chore: simplify the formatting of gcd_eq_zero_iffs a little (#28898)
Related to #28897.
1 parent cadca4e commit 5af5db0

File tree

2 files changed

+2
-2
lines changed

2 files changed

+2
-2
lines changed

Mathlib/Algebra/GCDMonoid/Finset.lean

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -173,7 +173,7 @@ theorem gcd_image [DecidableEq β] {g : γ → β} (s : Finset γ) :
173173
theorem gcd_eq_gcd_image [DecidableEq α] : s.gcd f = (s.image f).gcd id :=
174174
Eq.symm <| gcd_image _
175175

176-
theorem gcd_eq_zero_iff : s.gcd f = 0 ↔ ∀ x : β, x ∈ s f x = 0 := by
176+
theorem gcd_eq_zero_iff : s.gcd f = 0 ↔ ∀ x ∈ s, f x = 0 := by
177177
rw [gcd_def, Multiset.gcd_eq_zero_iff]
178178
constructor <;> intro h
179179
· intro b bs

Mathlib/Algebra/GCDMonoid/Multiset.lean

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -140,7 +140,7 @@ theorem gcd_mono {s₁ s₂ : Multiset α} (h : s₁ ⊆ s₂) : s₂.gcd ∣ s
140140
theorem normalize_gcd (s : Multiset α) : normalize s.gcd = s.gcd :=
141141
Multiset.induction_on s (by simp) fun a s _ ↦ by simp
142142

143-
theorem gcd_eq_zero_iff (s : Multiset α) : s.gcd = 0 ↔ ∀ x : α, x ∈ s x = 0 := by
143+
theorem gcd_eq_zero_iff (s : Multiset α) : s.gcd = 0 ↔ ∀ x ∈ s, x = 0 := by
144144
constructor
145145
· intro h x hx
146146
apply eq_zero_of_zero_dvd

0 commit comments

Comments
 (0)