File tree Expand file tree Collapse file tree 2 files changed +5
-5
lines changed Expand file tree Collapse file tree 2 files changed +5
-5
lines changed Original file line number Diff line number Diff line change @@ -259,11 +259,11 @@ theorem multiset_prod_X_sub_C_nextCoeff (t : Multiset R) :
259
259
set_option linter.uppercaseLean3 false in
260
260
#align polynomial.multiset_prod_X_sub_C_next_coeff Polynomial.multiset_prod_X_sub_C_nextCoeff
261
261
262
- theorem prod_x_sub_c_nextCoeff {s : Finset ι} (f : ι → R) :
262
+ theorem prod_X_sub_C_nextCoeff {s : Finset ι} (f : ι → R) :
263
263
nextCoeff (∏ i in s, (X - C (f i))) = -∑ i in s, f i := by
264
264
simpa using multiset_prod_X_sub_C_nextCoeff (s.1 .map f)
265
265
set_option linter.uppercaseLean3 false in
266
- #align polynomial.prod_X_sub_C_next_coeff Polynomial.prod_x_sub_c_nextCoeff
266
+ #align polynomial.prod_X_sub_C_next_coeff Polynomial.prod_X_sub_C_nextCoeff
267
267
268
268
theorem multiset_prod_X_sub_C_coeff_card_pred (t : Multiset R) (ht : 0 < Multiset.card t) :
269
269
(t.map fun x => X - C x).prod.coeff ((Multiset.card t) - 1 ) = -t.sum := by
Original file line number Diff line number Diff line change @@ -46,10 +46,10 @@ def IsPrimitive (p : R[X]) : Prop :=
46
46
∀ r : R, C r ∣ p → IsUnit r
47
47
#align polynomial.is_primitive Polynomial.IsPrimitive
48
48
49
- theorem isPrimitive_iff_isUnit_of_c_dvd {p : R[X]} : p.IsPrimitive ↔ ∀ r : R, C r ∣ p → IsUnit r :=
49
+ theorem isPrimitive_iff_isUnit_of_C_dvd {p : R[X]} : p.IsPrimitive ↔ ∀ r : R, C r ∣ p → IsUnit r :=
50
50
Iff.rfl
51
51
set_option linter.uppercaseLean3 false in
52
- #align polynomial.is_primitive_iff_is_unit_of_C_dvd Polynomial.isPrimitive_iff_isUnit_of_c_dvd
52
+ #align polynomial.is_primitive_iff_is_unit_of_C_dvd Polynomial.isPrimitive_iff_isUnit_of_C_dvd
53
53
54
54
@[simp]
55
55
theorem isPrimitive_one : IsPrimitive (1 : R[X]) := fun _ h =>
@@ -67,7 +67,7 @@ theorem IsPrimitive.ne_zero [Nontrivial R] {p : R[X]} (hp : p.IsPrimitive) : p
67
67
#align polynomial.is_primitive.ne_zero Polynomial.IsPrimitive.ne_zero
68
68
69
69
theorem isPrimitive_of_dvd {p q : R[X]} (hp : IsPrimitive p) (hq : q ∣ p) : IsPrimitive q :=
70
- fun a ha => isPrimitive_iff_isUnit_of_c_dvd .mp hp a (dvd_trans ha hq)
70
+ fun a ha => isPrimitive_iff_isUnit_of_C_dvd .mp hp a (dvd_trans ha hq)
71
71
#align polynomial.is_primitive_of_dvd Polynomial.isPrimitive_of_dvd
72
72
73
73
end Primitive
You can’t perform that action at this time.
0 commit comments