File tree Expand file tree Collapse file tree 1 file changed +14
-0
lines changed
Mathlib/Combinatorics/SimpleGraph Expand file tree Collapse file tree 1 file changed +14
-0
lines changed Original file line number Diff line number Diff line change @@ -719,6 +719,17 @@ theorem Preconnected.map {G : SimpleGraph V} {H : SimpleGraph V'} (f : G →g H)
719
719
protected lemma Preconnected.mono {G G' : SimpleGraph V} (h : G ≤ G') (hG : G.Preconnected) :
720
720
G'.Preconnected := fun u v => (hG u v).mono h
721
721
722
+ lemma bot_preconnected_iff_subsingleton : (⊥ : SimpleGraph V).Preconnected ↔ Subsingleton V := by
723
+ refine ⟨fun h ↦ ?_, fun h ↦ by simpa [subsingleton_iff, ← reachable_bot] using h⟩
724
+ contrapose h
725
+ simp [nontrivial_iff.mp <| not_subsingleton_iff_nontrivial.mp h, Preconnected, reachable_bot, h]
726
+
727
+ lemma bot_preconnected [Subsingleton V] : (⊥ : SimpleGraph V).Preconnected :=
728
+ bot_preconnected_iff_subsingleton.mpr ‹_›
729
+
730
+ lemma bot_not_preconnected [Nontrivial V] : ¬(⊥ : SimpleGraph V).Preconnected :=
731
+ bot_preconnected_iff_subsingleton.not.mpr <| not_subsingleton_iff_nontrivial.mpr ‹_›
732
+
722
733
lemma top_preconnected : (⊤ : SimpleGraph V).Preconnected := fun x y => by
723
734
if h : x = y then rw [h] else exact Adj.reachable h
724
735
@@ -758,6 +769,9 @@ protected lemma Connected.mono {G G' : SimpleGraph V} (h : G ≤ G')
758
769
preconnected := hG.preconnected.mono h
759
770
nonempty := hG.nonempty
760
771
772
+ lemma bot_not_connected [Nontrivial V] : ¬(⊥ : SimpleGraph V).Connected := by
773
+ simp [bot_not_preconnected, connected_iff, ‹_›]
774
+
761
775
lemma top_connected [Nonempty V] : (⊤ : SimpleGraph V).Connected where
762
776
preconnected := top_preconnected
763
777
You can’t perform that action at this time.
0 commit comments