|
| 1 | +/- |
| 2 | +Copyright (c) 2025 David Loeffler. All rights reserved. |
| 3 | +Released under Apache 2.0 license as described in the file LICENSE. |
| 4 | +Authors: David Loeffler |
| 5 | +-/ |
| 6 | +import Mathlib.Algebra.Algebra.Defs |
| 7 | +import Mathlib.Algebra.GCDMonoid.Finset |
| 8 | +import Mathlib.Algebra.GCDMonoid.Nat |
| 9 | +import Mathlib.Data.Matrix.Mul |
| 10 | +import Mathlib.Data.Rat.Cast.CharZero |
| 11 | + |
| 12 | +/-! |
| 13 | +# Lemmas on integer matrices |
| 14 | +
|
| 15 | +Here we collect some results about matrices over `ℚ` and `ℤ`. |
| 16 | +
|
| 17 | +## Main definitions and results |
| 18 | +
|
| 19 | +* `Matrix.num`, `Matrix.den`: express a rational matrix `A` as the quotient of an integer matrix |
| 20 | + by a (non-zero) natural. |
| 21 | +
|
| 22 | +## TODO |
| 23 | +
|
| 24 | +Consider generalizing these constructions to matrices over localizations of rings (or semirings). |
| 25 | +-/ |
| 26 | + |
| 27 | +namespace Matrix |
| 28 | + |
| 29 | +variable {m n : Type*} [Fintype m] [Fintype n] |
| 30 | + |
| 31 | +/-! |
| 32 | +## Casts |
| 33 | +
|
| 34 | +These results are useful shortcuts because the canonical casting maps out of `ℕ`, `ℤ`, and `ℚ` to |
| 35 | +suitable types are bare functions, not ring homs, so we cannot apply `Matrix.map_mul` directly to |
| 36 | +them. |
| 37 | +-/ |
| 38 | + |
| 39 | +lemma map_mul_natCast {α : Type*} [NonAssocSemiring α] (A B : Matrix n n ℕ) : |
| 40 | + map (A * B) ((↑) : ℕ → α) = map A (↑) * map B (↑) := |
| 41 | + Matrix.map_mul (f := Nat.castRingHom α) |
| 42 | + |
| 43 | +lemma map_mul_intCast {α : Type*} [NonAssocRing α] (A B : Matrix n n ℤ) : |
| 44 | + map (A * B) ((↑) : ℤ → α) = map A (↑) * map B (↑) := |
| 45 | + Matrix.map_mul (f := Int.castRingHom α) |
| 46 | + |
| 47 | +lemma map_mul_ratCast {α : Type*} [DivisionRing α] [CharZero α] (A B : Matrix n n ℚ) : |
| 48 | + map (A * B) ((↑) : ℚ → α) = map A (↑) * map B (↑) := |
| 49 | + Matrix.map_mul (f := Rat.castHom α) |
| 50 | + |
| 51 | +/-! |
| 52 | +## Denominator of a rational matrix |
| 53 | +-/ |
| 54 | + |
| 55 | +/-- The denominator of a matrix of rationals (as a `Nat`, defined as the LCM of the denominators of |
| 56 | +the entries). -/ |
| 57 | +protected def den (A : Matrix m n ℚ) : ℕ := Finset.univ.lcm (fun P : m × n ↦ (A P.1 P.2).den) |
| 58 | + |
| 59 | +/-- The numerator of a matrix of rationals (a matrix of integers, defined so that |
| 60 | +`A.num / A.den = A`). -/ |
| 61 | +protected def num (A : Matrix m n ℚ) : Matrix m n ℤ := ((A.den : ℚ) • A).map Rat.num |
| 62 | + |
| 63 | +lemma den_ne_zero (A : Matrix m n ℚ) : A.den ≠ 0 := by |
| 64 | + simp [Matrix.den, Finset.lcm_eq_zero_iff] |
| 65 | + |
| 66 | +lemma num_eq_zero_iff (A : Matrix m n ℚ) : A.num = 0 ↔ A = 0 := by |
| 67 | + simp [Matrix.num, ← ext_iff, A.den_ne_zero] |
| 68 | + |
| 69 | +lemma den_dvd_iff {A : Matrix m n ℚ} {r : ℕ} : |
| 70 | + A.den ∣ r ↔ ∀ i j, (A i j).den ∣ r := by |
| 71 | + simp [Matrix.den] |
| 72 | + |
| 73 | +lemma num_div_den (A : Matrix m n ℚ) (i : m) (j : n) : |
| 74 | + A.num i j / A.den = A i j := by |
| 75 | + obtain ⟨k, hk⟩ := den_dvd_iff.mp (dvd_refl A.den) i j |
| 76 | + rw [Matrix.num, map_apply, smul_apply, smul_eq_mul, mul_comm, |
| 77 | + div_eq_iff <| Nat.cast_ne_zero.mpr A.den_ne_zero, hk, Nat.cast_mul, ← mul_assoc, |
| 78 | + Rat.mul_den_eq_num, ← Int.cast_natCast k, ← Int.cast_mul, Rat.num_intCast] |
| 79 | + |
| 80 | +lemma inv_denom_smul_num (A : Matrix m n ℚ) : |
| 81 | + (A.den⁻¹ : ℚ) • A.num.map (↑) = A := by |
| 82 | + ext |
| 83 | + simp [← Matrix.num_div_den A, div_eq_inv_mul] |
| 84 | + |
| 85 | +@[simp] |
| 86 | +lemma den_neg (A : Matrix m n ℚ) : (-A).den = A.den := |
| 87 | + eq_of_forall_dvd <| by simp [den_dvd_iff] |
| 88 | + |
| 89 | +@[simp] |
| 90 | +lemma num_neg (A : Matrix m n ℚ) : (-A).num = -A.num := by |
| 91 | + ext |
| 92 | + simp [Matrix.num, map_neg] |
| 93 | + |
| 94 | +@[simp] lemma den_transpose (A : Matrix m n ℚ) : (Aᵀ).den = A.den := |
| 95 | + eq_of_forall_dvd fun _ ↦ by simpa [den_dvd_iff] using forall_comm |
| 96 | + |
| 97 | +@[simp] lemma num_transpose (A : Matrix m n ℚ) : (Aᵀ).num = (A.num)ᵀ := by |
| 98 | + ext; simp [Matrix.num] |
| 99 | + |
| 100 | +/-! |
| 101 | +### Compatibility with `map` |
| 102 | +-/ |
| 103 | + |
| 104 | +@[simp] |
| 105 | +lemma den_map_intCast (A : Matrix m n ℤ) : (A.map (↑)).den = 1 := by |
| 106 | + simp [← Nat.dvd_one, Matrix.den_dvd_iff] |
| 107 | + |
| 108 | +@[simp] |
| 109 | +lemma num_map_intCast (A : Matrix m n ℤ) : (A.map (↑)).num = A := by |
| 110 | + simp [Matrix.num, Function.comp_def] |
| 111 | + |
| 112 | +@[simp] |
| 113 | +lemma den_map_natCast (A : Matrix m n ℕ) : (A.map (↑)).den = 1 := by |
| 114 | + simp [← Nat.dvd_one, Matrix.den_dvd_iff] |
| 115 | + |
| 116 | +@[simp] |
| 117 | +lemma num_map_natCast (A : Matrix m n ℕ) : (A.map (↑)).num = A.map (↑) := by |
| 118 | + simp [Matrix.num, Function.comp_def] |
| 119 | + |
| 120 | +/-! |
| 121 | +### Casts from scalar types |
| 122 | +-/ |
| 123 | + |
| 124 | +@[simp] |
| 125 | +lemma den_natCast [DecidableEq m] (a : ℕ) : (a : Matrix m m ℚ).den = 1 := by |
| 126 | + simpa [← diagonal_natCast] using den_map_natCast (a : Matrix m m ℕ) |
| 127 | + |
| 128 | +@[simp] |
| 129 | +lemma num_natCast [DecidableEq m] (a : ℕ) : (a : Matrix m m ℚ).num = a := by |
| 130 | + simpa [← diagonal_natCast] using num_map_natCast (a : Matrix m m ℕ) |
| 131 | + |
| 132 | +@[simp] |
| 133 | +lemma den_ofNat [DecidableEq m] (a : ℕ) [a.AtLeastTwo] : |
| 134 | + (ofNat(a) : Matrix m m ℚ).den = 1 := |
| 135 | + den_natCast a |
| 136 | + |
| 137 | +@[simp] |
| 138 | +lemma num_ofNat [DecidableEq m] (a : ℕ) [a.AtLeastTwo] : |
| 139 | + (ofNat(a) : Matrix m m ℚ).num = a := |
| 140 | + num_natCast a |
| 141 | + |
| 142 | +@[simp] |
| 143 | +lemma den_intCast [DecidableEq m] (a : ℤ) : (a : Matrix m m ℚ).den = 1 := by |
| 144 | + simpa [← diagonal_intCast] using den_map_intCast (a : Matrix m m ℤ) |
| 145 | + |
| 146 | +@[simp] |
| 147 | +lemma num_intCast [DecidableEq m] (a : ℤ) : (a : Matrix m m ℚ).num = a := by |
| 148 | + simpa [← diagonal_intCast] using num_map_intCast (a : Matrix m m ℤ) |
| 149 | + |
| 150 | +@[simp] |
| 151 | +lemma den_zero : (0 : Matrix m n ℚ).den = 1 := |
| 152 | + den_map_natCast 0 |
| 153 | + |
| 154 | +@[simp] |
| 155 | +lemma num_zero : (0 : Matrix m n ℚ).num = 0 := |
| 156 | + num_map_natCast 0 |
| 157 | + |
| 158 | +@[simp] |
| 159 | +lemma den_one [DecidableEq m] : (1 : Matrix m m ℚ).den = 1 := |
| 160 | + den_natCast 1 |
| 161 | + |
| 162 | +@[simp] |
| 163 | +lemma num_one [DecidableEq m] : (1 : Matrix m m ℚ).num = 1 := |
| 164 | + num_natCast 1 |
| 165 | + |
| 166 | +end Matrix |
0 commit comments