@@ -294,8 +294,8 @@ theorem map_op_mul :
294
294
theorem comap_unop_mul :
295
295
comap (↑(opLinearEquiv R : A ≃ₗ[R] Aᵐᵒᵖ).symm : Aᵐᵒᵖ →ₗ[R] A) (M * N) =
296
296
comap (↑(opLinearEquiv R : A ≃ₗ[R] Aᵐᵒᵖ).symm : Aᵐᵒᵖ →ₗ[R] A) N *
297
- comap (↑(opLinearEquiv R : A ≃ₗ[R] Aᵐᵒᵖ).symm : Aᵐᵒᵖ →ₗ[R] A) M :=
298
- by simp_rw [← map_equiv_eq_comap_symm, map_op_mul]
297
+ comap (↑(opLinearEquiv R : A ≃ₗ[R] Aᵐᵒᵖ).symm : Aᵐᵒᵖ →ₗ[R] A) M := by
298
+ simp_rw [← map_equiv_eq_comap_symm, map_op_mul]
299
299
#align submodule.comap_unop_mul Submodule.comap_unop_mul
300
300
301
301
theorem map_unop_mul (M N : Submodule R Aᵐᵒᵖ) :
@@ -312,8 +312,8 @@ theorem map_unop_mul (M N : Submodule R Aᵐᵒᵖ) :
312
312
theorem comap_op_mul (M N : Submodule R Aᵐᵒᵖ) :
313
313
comap (↑(opLinearEquiv R : A ≃ₗ[R] Aᵐᵒᵖ) : A →ₗ[R] Aᵐᵒᵖ) (M * N) =
314
314
comap (↑(opLinearEquiv R : A ≃ₗ[R] Aᵐᵒᵖ) : A →ₗ[R] Aᵐᵒᵖ) N *
315
- comap (↑(opLinearEquiv R : A ≃ₗ[R] Aᵐᵒᵖ) : A →ₗ[R] Aᵐᵒᵖ) M :=
316
- by simp_rw [comap_equiv_eq_map_symm, map_unop_mul]
315
+ comap (↑(opLinearEquiv R : A ≃ₗ[R] Aᵐᵒᵖ) : A →ₗ[R] Aᵐᵒᵖ) M := by
316
+ simp_rw [comap_equiv_eq_map_symm, map_unop_mul]
317
317
#align submodule.comap_op_mul Submodule.comap_op_mul
318
318
319
319
section
@@ -534,14 +534,14 @@ theorem comap_op_pow (n : ℕ) (M : Submodule R Aᵐᵒᵖ) :
534
534
535
535
theorem map_op_pow (n : ℕ) :
536
536
map (↑(opLinearEquiv R : A ≃ₗ[R] Aᵐᵒᵖ) : A →ₗ[R] Aᵐᵒᵖ) (M ^ n) =
537
- map (↑(opLinearEquiv R : A ≃ₗ[R] Aᵐᵒᵖ) : A →ₗ[R] Aᵐᵒᵖ) M ^ n :=
538
- by rw [map_equiv_eq_comap_symm, map_equiv_eq_comap_symm, comap_unop_pow]
537
+ map (↑(opLinearEquiv R : A ≃ₗ[R] Aᵐᵒᵖ) : A →ₗ[R] Aᵐᵒᵖ) M ^ n := by
538
+ rw [map_equiv_eq_comap_symm, map_equiv_eq_comap_symm, comap_unop_pow]
539
539
#align submodule.map_op_pow Submodule.map_op_pow
540
540
541
541
theorem map_unop_pow (n : ℕ) (M : Submodule R Aᵐᵒᵖ) :
542
542
map (↑(opLinearEquiv R : A ≃ₗ[R] Aᵐᵒᵖ).symm : Aᵐᵒᵖ →ₗ[R] A) (M ^ n) =
543
- map (↑(opLinearEquiv R : A ≃ₗ[R] Aᵐᵒᵖ).symm : Aᵐᵒᵖ →ₗ[R] A) M ^ n :=
544
- by rw [← comap_equiv_eq_map_symm, ← comap_equiv_eq_map_symm, comap_op_pow]
543
+ map (↑(opLinearEquiv R : A ≃ₗ[R] Aᵐᵒᵖ).symm : Aᵐᵒᵖ →ₗ[R] A) M ^ n := by
544
+ rw [← comap_equiv_eq_map_symm, ← comap_equiv_eq_map_symm, comap_op_pow]
545
545
#align submodule.map_unop_pow Submodule.map_unop_pow
546
546
547
547
/-- `span` is a semiring homomorphism (recall multiplication is pointwise multiplication of subsets
0 commit comments