We read every piece of feedback, and take your input very seriously.
To see all available qualifiers, see our documentation.
There was an error while loading. Please reload this page.
(∀ ε > 0, |x - y| < ε) → x = y
1 parent 5716f46 commit 5f3459dCopy full SHA for 5f3459d
Mathlib/Algebra/Order/Group/Abs.lean
@@ -179,6 +179,12 @@ theorem dist_bdd_within_interval {a b lb ub : α} (hal : lb ≤ a) (hau : a ≤
179
theorem eq_of_abs_sub_nonpos (h : |a - b| ≤ 0) : a = b :=
180
eq_of_abs_sub_eq_zero (le_antisymm h (abs_nonneg (a - b)))
181
182
+lemma eq_of_abs_sub_lt_all {x y : α} (h : ∀ ε > 0, |x - y| < ε) : x = y :=
183
+ eq_of_abs_sub_nonpos <| forall_lt_iff_le'.mp h
184
+
185
+lemma eq_of_abs_sub_le_all [DenselyOrdered α] {x y : α} (h : ∀ ε > 0, |x - y| ≤ ε) : x = y :=
186
+ eq_of_abs_sub_nonpos <| forall_gt_imp_ge_iff_le_of_dense.mp h
187
188
theorem abs_sub_nonpos : |a - b| ≤ 0 ↔ a = b :=
189
⟨eq_of_abs_sub_nonpos, by rintro rfl; rw [sub_self, abs_zero]⟩
190
0 commit comments