@@ -19,7 +19,8 @@ then `f * g` tends to positive infinity.
19
19
-/
20
20
21
21
22
- open Set Filter TopologicalSpace Function Topology Classical
22
+ open Set Filter TopologicalSpace Function
23
+ open scoped Pointwise Topology
23
24
open OrderDual (toDual ofDual)
24
25
25
26
/-- If a (possibly non-unital and/or non-associative) ring `R` admits a submultiplicative
@@ -117,20 +118,22 @@ theorem Filter.Tendsto.neg_mul_atBot {C : 𝕜} (hC : C < 0) (hf : Tendsto f l (
117
118
simpa only [mul_comm] using hg.atBot_mul_neg hC hf
118
119
#align filter.tendsto.neg_mul_at_bot Filter.Tendsto.neg_mul_atBot
119
120
121
+ @[simp]
122
+ lemma inv_atTop₀ : (atTop : Filter 𝕜)⁻¹ = 𝓝[>] 0 :=
123
+ (((atTop_basis_Ioi' (0 : 𝕜)).map _).comp_surjective inv_surjective).eq_of_same_basis <|
124
+ (nhdsWithin_Ioi_basis _).congr (by simp) fun a ha ↦ by simp [inv_Ioi (inv_pos.2 ha)]
125
+
126
+ @[simp] lemma inv_nhdsWithin_Ioi_zero : (𝓝[>] (0 : 𝕜))⁻¹ = atTop := by
127
+ rw [← inv_atTop₀, inv_inv]
128
+
120
129
/-- The function `x ↦ x⁻¹` tends to `+∞` on the right of `0`. -/
121
- theorem tendsto_inv_zero_atTop : Tendsto (fun x : 𝕜 => x⁻¹) (𝓝[>] (0 : 𝕜)) atTop := by
122
- refine' (atTop_basis' 1 ).tendsto_right_iff.2 fun b hb => _
123
- have hb' : 0 < b := by positivity
124
- filter_upwards [Ioc_mem_nhdsWithin_Ioi
125
- ⟨le_rfl, inv_pos.2 hb'⟩] with x hx using(le_inv hx.1 hb').1 hx.2
130
+ theorem tendsto_inv_zero_atTop : Tendsto (fun x : 𝕜 => x⁻¹) (𝓝[>] (0 : 𝕜)) atTop :=
131
+ inv_nhdsWithin_Ioi_zero.le
126
132
#align tendsto_inv_zero_at_top tendsto_inv_zero_atTop
127
133
128
134
/-- The function `r ↦ r⁻¹` tends to `0` on the right as `r → +∞`. -/
129
- theorem tendsto_inv_atTop_zero' : Tendsto (fun r : 𝕜 => r⁻¹) atTop (𝓝[>] (0 : 𝕜)) := by
130
- refine (atTop_basis.tendsto_iff ⟨fun s => mem_nhdsWithin_Ioi_iff_exists_Ioc_subset⟩).2 ?_
131
- refine fun b hb => ⟨b⁻¹, trivial, fun x hx => ?_⟩
132
- have : 0 < x := lt_of_lt_of_le (inv_pos.2 hb) hx
133
- exact ⟨inv_pos.2 this, (inv_le this hb).2 hx⟩
135
+ theorem tendsto_inv_atTop_zero' : Tendsto (fun r : 𝕜 => r⁻¹) atTop (𝓝[>] (0 : 𝕜)) :=
136
+ inv_atTop₀.le
134
137
#align tendsto_inv_at_top_zero' tendsto_inv_atTop_zero'
135
138
136
139
theorem tendsto_inv_atTop_zero : Tendsto (fun r : 𝕜 => r⁻¹) atTop (𝓝 0 ) :=
0 commit comments