@@ -196,7 +196,30 @@ lemma charFun_map_mul {μ : Measure ℝ} (r t : ℝ) :
196
196
charFun (μ.map (r * ·)) t = charFun μ (r * t) := charFun_map_smul r t
197
197
198
198
variable {E : Type *} [MeasurableSpace E] {μ ν : Measure E} {t : E}
199
- [NormedAddCommGroup E] [InnerProductSpace ℝ E] [BorelSpace E] [SecondCountableTopology E]
199
+ [NormedAddCommGroup E] [InnerProductSpace ℝ E]
200
+
201
+ @[simp]
202
+ lemma charFun_dirac [OpensMeasurableSpace E] {x : E} (t : E) :
203
+ charFun (Measure.dirac x) t = cexp (⟪x, t⟫ * I) := by
204
+ rw [charFun_apply, integral_dirac]
205
+
206
+ lemma charFun_map_add_const [BorelSpace E] (r t : E) :
207
+ charFun (μ.map (· + r)) t = charFun μ t * cexp (⟪r, t⟫ * I) := by
208
+ rw [charFun_apply, charFun_apply, integral_map (by fun_prop) (by fun_prop),
209
+ ← integral_mul_const]
210
+ congr with a
211
+ rw [← Complex.exp_add]
212
+ congr
213
+ rw [inner_add_left]
214
+ simp only [ofReal_add]
215
+ ring
216
+
217
+ lemma charFun_map_const_add [BorelSpace E] (r t : E) :
218
+ charFun (μ.map (r + ·)) t = charFun μ t * cexp (⟪r, t⟫ * I) := by
219
+ simp_rw [add_comm r]
220
+ exact charFun_map_add_const _ _
221
+
222
+ variable [BorelSpace E] [SecondCountableTopology E]
200
223
201
224
/-- If the characteristic functions `charFun` of two finite measures `μ` and `ν` on
202
225
a complete second-countable inner product space coincide, then `μ = ν`. -/
@@ -270,6 +293,21 @@ lemma charFunDual_dirac [OpensMeasurableSpace E] {x : E} (L : Dual ℝ E) :
270
293
charFunDual (Measure.dirac x) L = cexp (L x * I) := by
271
294
rw [charFunDual_apply, integral_dirac]
272
295
296
+ lemma charFunDual_map_add_const [BorelSpace E] (r : E) (L : Dual ℝ E) :
297
+ charFunDual (μ.map (· + r)) L = charFunDual μ L * cexp (L r * I) := by
298
+ rw [charFunDual_apply, charFunDual_apply, integral_map (by fun_prop) (by fun_prop),
299
+ ← integral_mul_const]
300
+ congr with a
301
+ rw [← Complex.exp_add]
302
+ congr
303
+ simp only [map_add, ofReal_add]
304
+ ring
305
+
306
+ lemma charFunDual_map_const_add [BorelSpace E] (r : E) (L : Dual ℝ E) :
307
+ charFunDual (μ.map (r + ·)) L = charFunDual μ L * cexp (L r * I) := by
308
+ simp_rw [add_comm r]
309
+ exact charFunDual_map_add_const _ _
310
+
273
311
/-- The characteristic function of a product of measures is a product of
274
312
characteristic functions. -/
275
313
lemma charFunDual_prod [SFinite μ] [SFinite ν] (L : Dual ℝ (E × F)) :
0 commit comments