@@ -144,15 +144,17 @@ noncomputable def _root_.AddAction.orbitZMultiplesEquiv {α β : Type*} [AddGrou
144
144
(zmultiplesQuotientStabilizerEquiv a b).toEquiv
145
145
#align add_action.orbit_zmultiples_equiv AddAction.orbitZMultiplesEquiv
146
146
147
- attribute [to_additive existing AddAction.orbitZMultiplesEquiv ] orbitZPowersEquiv
147
+ attribute [to_additive existing] orbitZPowersEquiv
148
148
149
- @[to_additive orbit_zmultiples_equiv_symm_apply ]
149
+ @[to_additive]
150
150
theorem orbitZPowersEquiv_symm_apply (k : ZMod (minimalPeriod (a • ·) b)) :
151
151
(orbitZPowersEquiv a b).symm k =
152
152
(⟨a, mem_zpowers a⟩ : zpowers a) ^ (cast k : ℤ) • ⟨b, mem_orbit_self b⟩ :=
153
153
rfl
154
154
#align mul_action.orbit_zpowers_equiv_symm_apply MulAction.orbitZPowersEquiv_symm_apply
155
- #align add_action.orbit_zmultiples_equiv_symm_apply AddAction.orbit_zmultiples_equiv_symm_apply
155
+ #align add_action.orbit_zmultiples_equiv_symm_apply AddAction.orbitZMultiplesEquiv_symm_apply
156
+ /- 2024-02-21 -/ @[deprecated] alias _root_.AddAction.orbit_zmultiples_equiv_symm_apply :=
157
+ orbitZMultiplesEquiv_symm_apply
156
158
157
159
theorem orbitZPowersEquiv_symm_apply' (k : ℤ) :
158
160
(orbitZPowersEquiv a b).symm k =
@@ -165,12 +167,12 @@ theorem _root_.AddAction.orbitZMultiplesEquiv_symm_apply' {α β : Type*} [AddGr
165
167
[AddAction α β] (b : β) (k : ℤ) :
166
168
(AddAction.orbitZMultiplesEquiv a b).symm k =
167
169
k • (⟨a, mem_zmultiples a⟩ : zmultiples a) +ᵥ ⟨b, AddAction.mem_orbit_self b⟩ := by
168
- rw [AddAction.orbit_zmultiples_equiv_symm_apply , ZMod.coe_int_cast]
170
+ rw [AddAction.orbitZMultiplesEquiv_symm_apply , ZMod.coe_int_cast]
169
171
-- porting note: times out without `a b` explicit
170
172
exact Subtype.ext (zsmul_vadd_mod_minimalPeriod a b k)
171
173
#align add_action.orbit_zmultiples_equiv_symm_apply' AddAction.orbitZMultiplesEquiv_symm_apply'
172
174
173
- attribute [to_additive existing AddAction.orbitZMultiplesEquiv_symm_apply' ]
175
+ attribute [to_additive existing]
174
176
orbitZPowersEquiv_symm_apply'
175
177
176
178
@[to_additive]
@@ -201,7 +203,7 @@ open Subgroup
201
203
variable {α : Type *} [Group α] (a : α)
202
204
203
205
/-- See also `Fintype.card_zpowers`. -/
204
- @[to_additive (attr := simp) Nat.card_zmultiples "See also `Fintype.card_zmultiples`."]
206
+ @[to_additive (attr := simp) "See also `Fintype.card_zmultiples`."]
205
207
theorem Nat.card_zpowers : Nat.card (zpowers a) = orderOf a := by
206
208
have := Nat.card_congr (MulAction.orbitZPowersEquiv a (1 : α))
207
209
rwa [Nat.card_zmod, orbit_subgroup_one_eq_self] at this
@@ -210,15 +212,15 @@ theorem Nat.card_zpowers : Nat.card (zpowers a) = orderOf a := by
210
212
211
213
variable {a}
212
214
213
- @[to_additive (attr := simp) finite_zmultiples ]
215
+ @[to_additive (attr := simp)]
214
216
lemma finite_zpowers : (zpowers a : Set α).Finite ↔ IsOfFinOrder a := by
215
217
simp only [← orderOf_pos_iff, ← Nat.card_zpowers, Nat.card_pos_iff, ← SetLike.coe_sort_coe,
216
218
nonempty_coe_sort, Nat.card_pos_iff, Set.finite_coe_iff, Subgroup.coe_nonempty, true_and]
217
219
218
- @[to_additive (attr := simp) infinite_zmultiples ]
220
+ @[to_additive (attr := simp)]
219
221
lemma infinite_zpowers : (zpowers a : Set α).Infinite ↔ ¬IsOfFinOrder a := finite_zpowers.not
220
222
221
- @[to_additive IsOfFinAddOrder.finite_zmultiples ]
223
+ @[to_additive]
222
224
protected alias ⟨_, IsOfFinOrder.finite_zpowers⟩ := finite_zpowers
223
225
#align is_of_fin_order.finite_zpowers IsOfFinOrder.finite_zpowers
224
226
#align is_of_fin_add_order.finite_zmultiples IsOfFinAddOrder.finite_zmultiples
0 commit comments