Skip to content

Commit 66c4d09

Browse files
committed
feat(CategoryTheory/SmallObject): llp is stable under transfinite composition (#21682)
We deduce from previous results (#20119) that if `W : MorphismProperty C`, then the class `W.llp` of morphisms which satisfy the left lifting property with respect to `W` is stable under transfinite composition.
1 parent 38f2940 commit 66c4d09

File tree

3 files changed

+69
-9
lines changed

3 files changed

+69
-9
lines changed

Mathlib/CategoryTheory/MorphismProperty/Basic.lean

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -72,7 +72,7 @@ lemma sSup_iff (S : Set (MorphismProperty C)) {X Y : C} (f : X ⟶ Y) :
7272
exact ⟨_, ⟨⟨_, ⟨_, ⟨⟨W, hW⟩, rfl⟩⟩, rfl⟩, rfl⟩, hf⟩
7373

7474
@[simp]
75-
lemma iSup_iff {ι : Type*} (W : ι → MorphismProperty C) {X Y : C} (f : X ⟶ Y) :
75+
lemma iSup_iff {ι : Sort*} (W : ι → MorphismProperty C) {X Y : C} (f : X ⟶ Y) :
7676
iSup W f ↔ ∃ i, W i f := by
7777
apply (sSup_iff (Set.range W) f).trans
7878
constructor

Mathlib/CategoryTheory/MorphismProperty/TransfiniteComposition.lean

Lines changed: 25 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -136,6 +136,11 @@ of morphisms in `W`. -/
136136
def transfiniteCompositionsOfShape : MorphismProperty C :=
137137
fun _ _ f ↦ Nonempty (W.TransfiniteCompositionOfShape J f)
138138

139+
lemma transfiniteCompositionsOfShape_monotone :
140+
Monotone (transfiniteCompositionsOfShape (C := C) (J := J)) := by
141+
rintro _ _ h _ _ _ ⟨t⟩
142+
exact ⟨t.ofLE h⟩
143+
139144
variable {J} in
140145
lemma transfiniteCompositionsOfShape_eq_of_orderIso (e : J ≃o J') :
141146
W.transfiniteCompositionsOfShape J =
@@ -214,6 +219,26 @@ instance : W.IsMultiplicative where
214219

215220
end IsStableUnderTransfiniteComposition
216221

222+
/-- The class of transfinite compositions (for arbitrary well-ordered types `J : Type w`)
223+
of a class of morphisms `W`. -/
224+
@[pp_with_univ]
225+
def transfiniteCompositions : MorphismProperty C :=
226+
⨆ (J : Type w) (_ : LinearOrder J) (_ : SuccOrder J) (_ : OrderBot J)
227+
(_ : WellFoundedLT J), W.transfiniteCompositionsOfShape J
228+
229+
lemma transfiniteCompositions_iff {X Y : C} (f : X ⟶ Y) :
230+
transfiniteCompositions.{w} W f ↔
231+
∃ (J : Type w) (_ : LinearOrder J) (_ : SuccOrder J) (_ : OrderBot J)
232+
(_ : WellFoundedLT J), W.transfiniteCompositionsOfShape J f := by
233+
simp only [transfiniteCompositions, iSup_iff]
234+
235+
lemma transfiniteCompositionsOfShape_le_transfiniteCompositions
236+
(J : Type w) [LinearOrder J] [SuccOrder J] [OrderBot J] [WellFoundedLT J] :
237+
W.transfiniteCompositionsOfShape J ≤ transfiniteCompositions.{w} W := by
238+
intro A B f hf
239+
rw [transfiniteCompositions_iff]
240+
exact ⟨_, _, _, _, _, hf⟩
241+
217242
end MorphismProperty
218243

219244
end CategoryTheory

Mathlib/CategoryTheory/SmallObject/TransfiniteCompositionLifting.lean

Lines changed: 43 additions & 8 deletions
Original file line numberDiff line numberDiff line change
@@ -4,15 +4,24 @@ Released under Apache 2.0 license as described in the file LICENSE.
44
Authors: Joël Riou
55
-/
66
import Mathlib.CategoryTheory.SmallObject.WellOrderInductionData
7+
import Mathlib.CategoryTheory.MorphismProperty.LiftingProperty
8+
import Mathlib.CategoryTheory.MorphismProperty.TransfiniteComposition
79
import Mathlib.CategoryTheory.Limits.Shapes.Preorder.WellOrderContinuous
810

911
/-!
1012
# The left lifting property is stable under transfinite composition
1113
12-
Let `C` be a category, and `p : X ⟶ Y` be a morphism in `C`. In this file,
13-
we show that a transfinite composition of morphisms that have the left
14-
lifting property with respect to `p` also has the left lifting property with
15-
respect to `p`, see `HasLiftingProperty.transfiniteComposition.hasLiftingProperty_ι_app_bot`.
14+
In this file, we show that if `W : MorphismProperty C`, then
15+
`W.llp.IsStableUnderTransfiniteCompositionOfShape J`, i.e.
16+
the class of morphisms which have the left lifting property with
17+
respect to `W` is stable under transfinite composition.
18+
19+
The main technical lemma is
20+
`HasLiftingProperty.transfiniteComposition.hasLiftingProperty_ι_app_bot`.
21+
It corresponds to the particular case `W` contains only one morphism `p : X ⟶ Y`:
22+
it shows that a transfinite composition of morphisms that have the left
23+
lifting property with respect to `p` also has the left lifting property
24+
with respect to `p`.
1625
1726
About the proof, given a colimit cocone `c` for a well-order-continuous
1827
functor `F : J ⥤ C` from a well-ordered type `J`, we introduce a projective
@@ -39,10 +48,6 @@ This is constructed by transfinite induction on `j`:
3948
`F.obj j ⟶ F.obj (Order.succ j)` has the left lifting property with respect to `p`;
4049
* When `j` is a limit element, we use the "continuity" of `F`.
4150
42-
TODO: Given `P : MorphismProperty C`, deduce that the class of morphisms
43-
that have the left lifting property with respect to `P` is stable
44-
by transfinite composition.
45-
4651
-/
4752

4853
universe w v u
@@ -221,4 +226,34 @@ end transfiniteComposition
221226

222227
end HasLiftingProperty
223228

229+
namespace MorphismProperty
230+
231+
variable (W : MorphismProperty C)
232+
(J : Type w) [LinearOrder J] [SuccOrder J] [OrderBot J] [WellFoundedLT J]
233+
234+
instance isStableUnderTransfiniteCompositionOfShape_llp :
235+
W.llp.IsStableUnderTransfiniteCompositionOfShape J := by
236+
rw [isStableUnderTransfiniteCompositionOfShape_iff]
237+
rintro X Y f ⟨h⟩
238+
have : W.llp (h.incl.app ⊥) := fun _ _ p hp ↦
239+
HasLiftingProperty.transfiniteComposition.hasLiftingProperty_ι_app_bot
240+
(hc := h.isColimit) (fun j hj ↦ h.map_mem j hj _ hp)
241+
exact (MorphismProperty.arrow_mk_iso_iff _
242+
(Arrow.isoMk h.isoBot.symm (Iso.refl _))).2 this
243+
244+
lemma transfiniteCompositionsOfShape_le_llp_rlp :
245+
W.transfiniteCompositionsOfShape J ≤ W.rlp.llp := by
246+
have := W.rlp.isStableUnderTransfiniteCompositionOfShape_llp J
247+
rw [isStableUnderTransfiniteCompositionOfShape_iff] at this
248+
exact le_trans (transfiniteCompositionsOfShape_monotone J W.le_llp_rlp) this
249+
250+
lemma transfiniteCompositions_le_llp_rlp :
251+
transfiniteCompositions.{w} W ≤ W.rlp.llp := by
252+
intro _ _ f hf
253+
rw [transfiniteCompositions_iff] at hf
254+
obtain ⟨_, _, _, _, _, hf⟩ := hf
255+
exact W.transfiniteCompositionsOfShape_le_llp_rlp _ _ hf
256+
257+
end MorphismProperty
258+
224259
end CategoryTheory

0 commit comments

Comments
 (0)