@@ -4,15 +4,24 @@ Released under Apache 2.0 license as described in the file LICENSE.
4
4
Authors: Joël Riou
5
5
-/
6
6
import Mathlib.CategoryTheory.SmallObject.WellOrderInductionData
7
+ import Mathlib.CategoryTheory.MorphismProperty.LiftingProperty
8
+ import Mathlib.CategoryTheory.MorphismProperty.TransfiniteComposition
7
9
import Mathlib.CategoryTheory.Limits.Shapes.Preorder.WellOrderContinuous
8
10
9
11
/-!
10
12
# The left lifting property is stable under transfinite composition
11
13
12
- Let `C` be a category, and `p : X ⟶ Y` be a morphism in `C`. In this file,
13
- we show that a transfinite composition of morphisms that have the left
14
- lifting property with respect to `p` also has the left lifting property with
15
- respect to `p`, see `HasLiftingProperty.transfiniteComposition.hasLiftingProperty_ι_app_bot`.
14
+ In this file, we show that if `W : MorphismProperty C`, then
15
+ `W.llp.IsStableUnderTransfiniteCompositionOfShape J`, i.e.
16
+ the class of morphisms which have the left lifting property with
17
+ respect to `W` is stable under transfinite composition.
18
+
19
+ The main technical lemma is
20
+ `HasLiftingProperty.transfiniteComposition.hasLiftingProperty_ι_app_bot`.
21
+ It corresponds to the particular case `W` contains only one morphism `p : X ⟶ Y`:
22
+ it shows that a transfinite composition of morphisms that have the left
23
+ lifting property with respect to `p` also has the left lifting property
24
+ with respect to `p`.
16
25
17
26
About the proof, given a colimit cocone `c` for a well-order-continuous
18
27
functor `F : J ⥤ C` from a well-ordered type `J`, we introduce a projective
@@ -39,10 +48,6 @@ This is constructed by transfinite induction on `j`:
39
48
`F.obj j ⟶ F.obj (Order.succ j)` has the left lifting property with respect to `p`;
40
49
* When `j` is a limit element, we use the "continuity" of `F`.
41
50
42
- TODO: Given `P : MorphismProperty C`, deduce that the class of morphisms
43
- that have the left lifting property with respect to `P` is stable
44
- by transfinite composition.
45
-
46
51
-/
47
52
48
53
universe w v u
@@ -221,4 +226,34 @@ end transfiniteComposition
221
226
222
227
end HasLiftingProperty
223
228
229
+ namespace MorphismProperty
230
+
231
+ variable (W : MorphismProperty C)
232
+ (J : Type w) [LinearOrder J] [SuccOrder J] [OrderBot J] [WellFoundedLT J]
233
+
234
+ instance isStableUnderTransfiniteCompositionOfShape_llp :
235
+ W.llp.IsStableUnderTransfiniteCompositionOfShape J := by
236
+ rw [isStableUnderTransfiniteCompositionOfShape_iff]
237
+ rintro X Y f ⟨h⟩
238
+ have : W.llp (h.incl.app ⊥) := fun _ _ p hp ↦
239
+ HasLiftingProperty.transfiniteComposition.hasLiftingProperty_ι_app_bot
240
+ (hc := h.isColimit) (fun j hj ↦ h.map_mem j hj _ hp)
241
+ exact (MorphismProperty.arrow_mk_iso_iff _
242
+ (Arrow.isoMk h.isoBot.symm (Iso.refl _))).2 this
243
+
244
+ lemma transfiniteCompositionsOfShape_le_llp_rlp :
245
+ W.transfiniteCompositionsOfShape J ≤ W.rlp.llp := by
246
+ have := W.rlp.isStableUnderTransfiniteCompositionOfShape_llp J
247
+ rw [isStableUnderTransfiniteCompositionOfShape_iff] at this
248
+ exact le_trans (transfiniteCompositionsOfShape_monotone J W.le_llp_rlp) this
249
+
250
+ lemma transfiniteCompositions_le_llp_rlp :
251
+ transfiniteCompositions.{w} W ≤ W.rlp.llp := by
252
+ intro _ _ f hf
253
+ rw [transfiniteCompositions_iff] at hf
254
+ obtain ⟨_, _, _, _, _, hf⟩ := hf
255
+ exact W.transfiniteCompositionsOfShape_le_llp_rlp _ _ hf
256
+
257
+ end MorphismProperty
258
+
224
259
end CategoryTheory
0 commit comments