Skip to content

Commit 699bc90

Browse files
committed
chore(Analysis): rename lipschitz_on_univ to lipschitzOn_univ (#6946)
Also rename `dimH_image_le_of_locally_lipschitz_on` to `dimH_image_le_of_locally_lipschitzOn`.
1 parent 01fd4ae commit 699bc90

File tree

10 files changed

+18
-18
lines changed

10 files changed

+18
-18
lines changed

Mathlib/Analysis/Calculus/FDeriv/Basic.lean

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -87,7 +87,7 @@ characterized in terms of the `Tendsto` relation.
8787
We also introduce predicates `DifferentiableWithinAt 𝕜 f s x` (where `𝕜` is the base field,
8888
`f` the function to be differentiated, `x` the point at which the derivative is asserted to exist,
8989
and `s` the set along which the derivative is defined), as well as `DifferentiableAt 𝕜 f x`,
90-
`Differentiable_on 𝕜 f s` and `Differentiable 𝕜 f` to express the existence of a derivative.
90+
`DifferentiableOn 𝕜 f s` and `Differentiable 𝕜 f` to express the existence of a derivative.
9191
9292
To be able to compute with derivatives, we write `fderivWithin 𝕜 f s x` and `fderiv 𝕜 f x`
9393
for some choice of a derivative if it exists, and the zero function otherwise. This choice only

Mathlib/Analysis/Calculus/Inverse.lean

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -482,7 +482,7 @@ theorem exists_homeomorph_extension {E : Type*} [NormedAddCommGroup E] [NormedSp
482482
have fg : EqOn f g s := fun x hx => by simp_rw [← uf hx, Pi.sub_apply, add_sub_cancel'_right]
483483
have hg : ApproximatesLinearOn g (f' : E →L[ℝ] F) univ (lipschitzExtensionConstant F * c) := by
484484
apply LipschitzOnWith.approximatesLinearOn
485-
rw [lipschitz_on_univ]
485+
rw [lipschitzOn_univ]
486486
convert hu
487487
ext x
488488
simp only [add_sub_cancel', ContinuousLinearEquiv.coe_coe, Pi.sub_apply]

Mathlib/Analysis/Calculus/MeanValue.lean

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -684,7 +684,7 @@ theorem lipschitzOnWith_of_nnnorm_deriv_le {C : ℝ≥0} (hf : ∀ x ∈ s, Diff
684684
then the function is `C`-Lipschitz. Version with `deriv` and `LipschitzWith`. -/
685685
theorem _root_.lipschitzWith_of_nnnorm_deriv_le {C : ℝ≥0} (hf : Differentiable 𝕜 f)
686686
(bound : ∀ x, ‖deriv f x‖₊ ≤ C) : LipschitzWith C f :=
687-
lipschitz_on_univ.1 <|
687+
lipschitzOn_univ.1 <|
688688
convex_univ.lipschitzOnWith_of_nnnorm_deriv_le (fun x _ => hf x) fun x _ => bound x
689689
#align lipschitz_with_of_nnnorm_deriv_le lipschitzWith_of_nnnorm_deriv_le
690690

Mathlib/Analysis/Normed/Group/Basic.lean

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -854,11 +854,11 @@ theorem MonoidHomClass.uniformContinuous_of_bound [MonoidHomClass 𝓕 E F] (f :
854854
#align add_monoid_hom_class.uniform_continuous_of_bound AddMonoidHomClass.uniformContinuous_of_bound
855855

856856
@[to_additive IsCompact.exists_bound_of_continuousOn]
857-
theorem IsCompact.exists_bound_of_continuous_on' [TopologicalSpace α] {s : Set α} (hs : IsCompact s)
857+
theorem IsCompact.exists_bound_of_continuousOn' [TopologicalSpace α] {s : Set α} (hs : IsCompact s)
858858
{f : α → E} (hf : ContinuousOn f s) : ∃ C, ∀ x ∈ s, ‖f x‖ ≤ C :=
859859
(bounded_iff_forall_norm_le'.1 (hs.image_of_continuousOn hf).bounded).imp fun _C hC _x hx =>
860860
hC _ <| Set.mem_image_of_mem _ hx
861-
#align is_compact.exists_bound_of_continuous_on' IsCompact.exists_bound_of_continuous_on'
861+
#align is_compact.exists_bound_of_continuous_on' IsCompact.exists_bound_of_continuousOn'
862862
#align is_compact.exists_bound_of_continuous_on IsCompact.exists_bound_of_continuousOn
863863

864864
@[to_additive]

Mathlib/Analysis/NormedSpace/lpSpace.lean

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -1253,7 +1253,7 @@ theorem LipschitzOnWith.coordinate [PseudoMetricSpace α] (f : α → ℓ^∞(ι
12531253

12541254
theorem LipschitzWith.coordinate [PseudoMetricSpace α] {f : α → ℓ^∞(ι)} (K : ℝ≥0) :
12551255
LipschitzWith K f ↔ ∀ i : ι, LipschitzWith K (fun a : α ↦ f a i) := by
1256-
simp_rw [← lipschitz_on_univ]
1256+
simp_rw [← lipschitzOn_univ]
12571257
apply LipschitzOnWith.coordinate
12581258

12591259
end Lipschitz

Mathlib/Topology/Algebra/Polynomial.lean

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -22,7 +22,7 @@ In this file we prove the following lemmas.
2222
`Polynomial.continuousWithinAt_aeval`, `Polynomial.continuousOn_aeval`.
2323
* `Polynomial.continuous`: `Polynomial.eval` defines a continuous functions;
2424
we also prove convenience lemmas `Polynomial.continuousAt`, `Polynomial.continuousWithinAt`,
25-
`Polynomial.continuous_on`.
25+
`Polynomial.continuousOn`.
2626
* `Polynomial.tendsto_norm_atTop`: `λ x, ‖Polynomial.eval (z x) p‖` tends to infinity provided that
2727
`fun x ↦ ‖z x‖` tends to infinity and `0 < degree p`;
2828
* `Polynomial.tendsto_abv_eval₂_atTop`, `Polynomial.tendsto_abv_atTop`,

Mathlib/Topology/Instances/ENNReal.lean

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -1506,7 +1506,7 @@ theorem isClosed_setOf_lipschitzOnWith {α β} [PseudoEMetricSpace α] [PseudoEM
15061506

15071507
theorem isClosed_setOf_lipschitzWith {α β} [PseudoEMetricSpace α] [PseudoEMetricSpace β] (K : ℝ≥0) :
15081508
IsClosed { f : α → β | LipschitzWith K f } := by
1509-
simp only [← lipschitz_on_univ, isClosed_setOf_lipschitzOnWith]
1509+
simp only [← lipschitzOn_univ, isClosed_setOf_lipschitzOnWith]
15101510
#align is_closed_set_of_lipschitz_with isClosed_setOf_lipschitzWith
15111511

15121512
namespace Real

Mathlib/Topology/MetricSpace/HausdorffDimension.lean

Lines changed: 6 additions & 6 deletions
Original file line numberDiff line numberDiff line change
@@ -407,24 +407,24 @@ end LipschitzWith
407407
/-- If `s` is a set in an extended metric space `X` with second countable topology and `f : X → Y`
408408
is Lipschitz in a neighborhood within `s` of every point `x ∈ s`, then the Hausdorff dimension of
409409
the image `f '' s` is at most the Hausdorff dimension of `s`. -/
410-
theorem dimH_image_le_of_locally_lipschitz_on [SecondCountableTopology X] {f : X → Y} {s : Set X}
410+
theorem dimH_image_le_of_locally_lipschitzOn [SecondCountableTopology X] {f : X → Y} {s : Set X}
411411
(hf : ∀ x ∈ s, ∃ C : ℝ≥0, ∃ t ∈ 𝓝[s] x, LipschitzOnWith C f t) : dimH (f '' s) ≤ dimH s := by
412412
have : ∀ x ∈ s, ∃ C : ℝ≥0, ∃ t ∈ 𝓝[s] x, HolderOnWith C 1 f t := by
413413
simpa only [holderOnWith_one] using hf
414414
simpa only [ENNReal.coe_one, div_one] using dimH_image_le_of_locally_holder_on zero_lt_one this
415415
set_option linter.uppercaseLean3 false in
416-
#align dimH_image_le_of_locally_lipschitz_on dimH_image_le_of_locally_lipschitz_on
416+
#align dimH_image_le_of_locally_lipschitz_on dimH_image_le_of_locally_lipschitzOn
417417

418418
/-- If `f : X → Y` is Lipschitz in a neighborhood of each point `x : X`, then the Hausdorff
419419
dimension of `range f` is at most the Hausdorff dimension of `X`. -/
420-
theorem dimH_range_le_of_locally_lipschitz_on [SecondCountableTopology X] {f : X → Y}
420+
theorem dimH_range_le_of_locally_lipschitzOn [SecondCountableTopology X] {f : X → Y}
421421
(hf : ∀ x : X, ∃ C : ℝ≥0, ∃ s ∈ 𝓝 x, LipschitzOnWith C f s) :
422422
dimH (range f) ≤ dimH (univ : Set X) := by
423423
rw [← image_univ]
424-
refine dimH_image_le_of_locally_lipschitz_on fun x _ => ?_
424+
refine dimH_image_le_of_locally_lipschitzOn fun x _ => ?_
425425
simpa only [exists_prop, nhdsWithin_univ] using hf x
426426
set_option linter.uppercaseLean3 false in
427-
#align dimH_range_le_of_locally_lipschitz_on dimH_range_le_of_locally_lipschitz_on
427+
#align dimH_range_le_of_locally_lipschitz_on dimH_range_le_of_locally_lipschitzOn
428428

429429
namespace AntilipschitzWith
430430

@@ -600,7 +600,7 @@ dimension of `s`.
600600
TODO: do we actually need `Convex ℝ s`? -/
601601
theorem ContDiffOn.dimH_image_le {f : E → F} {s t : Set E} (hf : ContDiffOn ℝ 1 f s)
602602
(hc : Convex ℝ s) (ht : t ⊆ s) : dimH (f '' t) ≤ dimH t :=
603-
dimH_image_le_of_locally_lipschitz_on fun x hx =>
603+
dimH_image_le_of_locally_lipschitzOn fun x hx =>
604604
let ⟨C, u, hu, hf⟩ := (hf x (ht hx)).exists_lipschitzOnWith hc
605605
⟨C, u, nhdsWithin_mono _ ht hu, hf⟩
606606
set_option linter.uppercaseLean3 false in

Mathlib/Topology/MetricSpace/Holder.lean

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -89,7 +89,7 @@ alias ⟨_, LipschitzOnWith.holderOnWith⟩ := holderOnWith_one
8989

9090
@[simp]
9191
theorem holderWith_one {C : ℝ≥0} {f : X → Y} : HolderWith C 1 f ↔ LipschitzWith C f :=
92-
holderOnWith_univ.symm.trans <| holderOnWith_one.trans lipschitz_on_univ
92+
holderOnWith_univ.symm.trans <| holderOnWith_one.trans lipschitzOn_univ
9393
#align holder_with_one holderWith_one
9494

9595
alias ⟨_, LipschitzWith.holderWith⟩ := holderWith_one

Mathlib/Topology/MetricSpace/Lipschitz.lean

Lines changed: 3 additions & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -95,9 +95,9 @@ alias ⟨LipschitzOnWith.dist_le_mul, LipschitzOnWith.of_dist_le_mul⟩ :=
9595
#align lipschitz_on_with.of_dist_le_mul LipschitzOnWith.of_dist_le_mul
9696

9797
@[simp]
98-
theorem lipschitz_on_univ [PseudoEMetricSpace α] [PseudoEMetricSpace β] {K : ℝ≥0} {f : α → β} :
98+
theorem lipschitzOn_univ [PseudoEMetricSpace α] [PseudoEMetricSpace β] {K : ℝ≥0} {f : α → β} :
9999
LipschitzOnWith K f univ ↔ LipschitzWith K f := by simp [LipschitzOnWith, LipschitzWith]
100-
#align lipschitz_on_univ lipschitz_on_univ
100+
#align lipschitz_on_univ lipschitzOn_univ
101101

102102
theorem lipschitzOnWith_iff_restrict [PseudoEMetricSpace α] [PseudoEMetricSpace β] {K : ℝ≥0}
103103
{f : α → β} {s : Set α} : LipschitzOnWith K f s ↔ LipschitzWith K (s.restrict f) := by
@@ -647,7 +647,7 @@ theorem continuous_prod_of_dense_continuous_lipschitzWith [PseudoEMetricSpace α
647647
[TopologicalSpace β] [PseudoEMetricSpace γ] (f : α × β → γ) (K : ℝ≥0) {s : Set α}
648648
(hs : Dense s) (ha : ∀ a ∈ s, Continuous fun y => f (a, y))
649649
(hb : ∀ b, LipschitzWith K fun x => f (x, b)) : Continuous f := by
650-
simp only [continuous_iff_continuousOn_univ, ← univ_prod_univ, ← lipschitz_on_univ] at *
650+
simp only [continuous_iff_continuousOn_univ, ← univ_prod_univ, ← lipschitzOn_univ] at *
651651
exact continuousOn_prod_of_subset_closure_continuousOn_lipschitzOnWith f (subset_univ _)
652652
hs.closure_eq.ge K ha fun b _ => hb b
653653

0 commit comments

Comments
 (0)