@@ -407,24 +407,24 @@ end LipschitzWith
407
407
/-- If `s` is a set in an extended metric space `X` with second countable topology and `f : X → Y`
408
408
is Lipschitz in a neighborhood within `s` of every point `x ∈ s`, then the Hausdorff dimension of
409
409
the image `f '' s` is at most the Hausdorff dimension of `s`. -/
410
- theorem dimH_image_le_of_locally_lipschitz_on [SecondCountableTopology X] {f : X → Y} {s : Set X}
410
+ theorem dimH_image_le_of_locally_lipschitzOn [SecondCountableTopology X] {f : X → Y} {s : Set X}
411
411
(hf : ∀ x ∈ s, ∃ C : ℝ≥0 , ∃ t ∈ 𝓝[s] x, LipschitzOnWith C f t) : dimH (f '' s) ≤ dimH s := by
412
412
have : ∀ x ∈ s, ∃ C : ℝ≥0 , ∃ t ∈ 𝓝[s] x, HolderOnWith C 1 f t := by
413
413
simpa only [holderOnWith_one] using hf
414
414
simpa only [ENNReal.coe_one, div_one] using dimH_image_le_of_locally_holder_on zero_lt_one this
415
415
set_option linter.uppercaseLean3 false in
416
- #align dimH_image_le_of_locally_lipschitz_on dimH_image_le_of_locally_lipschitz_on
416
+ #align dimH_image_le_of_locally_lipschitz_on dimH_image_le_of_locally_lipschitzOn
417
417
418
418
/-- If `f : X → Y` is Lipschitz in a neighborhood of each point `x : X`, then the Hausdorff
419
419
dimension of `range f` is at most the Hausdorff dimension of `X`. -/
420
- theorem dimH_range_le_of_locally_lipschitz_on [SecondCountableTopology X] {f : X → Y}
420
+ theorem dimH_range_le_of_locally_lipschitzOn [SecondCountableTopology X] {f : X → Y}
421
421
(hf : ∀ x : X, ∃ C : ℝ≥0 , ∃ s ∈ 𝓝 x, LipschitzOnWith C f s) :
422
422
dimH (range f) ≤ dimH (univ : Set X) := by
423
423
rw [← image_univ]
424
- refine dimH_image_le_of_locally_lipschitz_on fun x _ => ?_
424
+ refine dimH_image_le_of_locally_lipschitzOn fun x _ => ?_
425
425
simpa only [exists_prop, nhdsWithin_univ] using hf x
426
426
set_option linter.uppercaseLean3 false in
427
- #align dimH_range_le_of_locally_lipschitz_on dimH_range_le_of_locally_lipschitz_on
427
+ #align dimH_range_le_of_locally_lipschitz_on dimH_range_le_of_locally_lipschitzOn
428
428
429
429
namespace AntilipschitzWith
430
430
@@ -600,7 +600,7 @@ dimension of `s`.
600
600
TODO: do we actually need `Convex ℝ s`? -/
601
601
theorem ContDiffOn.dimH_image_le {f : E → F} {s t : Set E} (hf : ContDiffOn ℝ 1 f s)
602
602
(hc : Convex ℝ s) (ht : t ⊆ s) : dimH (f '' t) ≤ dimH t :=
603
- dimH_image_le_of_locally_lipschitz_on fun x hx =>
603
+ dimH_image_le_of_locally_lipschitzOn fun x hx =>
604
604
let ⟨C, u, hu, hf⟩ := (hf x (ht hx)).exists_lipschitzOnWith hc
605
605
⟨C, u, nhdsWithin_mono _ ht hu, hf⟩
606
606
set_option linter.uppercaseLean3 false in
0 commit comments