@@ -1151,17 +1151,32 @@ end
1151
1151
1152
1152
/-! ### Support of derivatives -/
1153
1153
1154
-
1155
1154
section Support
1156
1155
1157
1156
open Function
1158
1157
1159
1158
variable (π : Type _) {E F : Type _} [NontriviallyNormedField π] [NormedAddCommGroup E]
1160
- [NormedSpace π E] [NormedAddCommGroup F] [NormedSpace π F] {f : E β F}
1159
+ [NormedSpace π E] [NormedAddCommGroup F] [NormedSpace π F] {f : E β F} {x : E}
1160
+
1161
+ theorem HasStrictFDerivAt.of_not_mem_tsupport (h : x β tsupport f) :
1162
+ HasStrictFDerivAt f (0 : E βL[π] F) x := by
1163
+ rw [not_mem_tsupport_iff_eventuallyEq] at h
1164
+ exact (hasStrictFDerivAt_const (0 : F) x).congr_of_eventuallyEq h.symm
1165
+
1166
+ theorem HasFDerivAt.of_not_mem_tsupport (h : x β tsupport f) :
1167
+ HasFDerivAt f (0 : E βL[π] F) x :=
1168
+ (HasStrictFDerivAt.of_not_mem_tsupport π h).hasFDerivAt
1169
+
1170
+ theorem HasFDerivWithinAt.of_not_mem_tsupport (h : x β tsupport f) :
1171
+ HasFDerivWithinAt f (0 : E βL[π] F) s x :=
1172
+ (HasFDerivAt.of_not_mem_tsupport π h).hasFDerivWithinAt
1173
+
1174
+ theorem fderiv_of_not_mem_tsupport (h : x β tsupport f) : fderiv π f x = 0 :=
1175
+ (HasFDerivAt.of_not_mem_tsupport π h).fderiv
1161
1176
1162
1177
theorem support_fderiv_subset : support (fderiv π f) β tsupport f := fun x β¦ by
1163
- rw [β not_imp_not, not_mem_tsupport_iff_eventuallyEq, nmem_support]
1164
- exact fun hx => hx.fderiv_eq.trans <| fderiv_const_apply 0
1178
+ rw [β not_imp_not, nmem_support]
1179
+ exact fderiv_of_not_mem_tsupport _
1165
1180
#align support_fderiv_subset support_fderiv_subset
1166
1181
1167
1182
theorem tsupport_fderiv_subset : tsupport (fderiv π f) β tsupport f :=
0 commit comments