Skip to content

Commit 6a969d4

Browse files
committed
feat: port Analysis.SpecialFunctions.Log.Basic (#4019)
Includes some additional declarations and golfs from #4017. Co-authored-by: Yury G. Kudryashov <urkud@urkud.name>
1 parent 0abd4a4 commit 6a969d4

File tree

3 files changed

+436
-0
lines changed

3 files changed

+436
-0
lines changed

Mathlib.lean

Lines changed: 1 addition & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -424,6 +424,7 @@ import Mathlib.Analysis.NormedSpace.Star.Basic
424424
import Mathlib.Analysis.NormedSpace.Units
425425
import Mathlib.Analysis.Seminorm
426426
import Mathlib.Analysis.SpecialFunctions.Exp
427+
import Mathlib.Analysis.SpecialFunctions.Log.Basic
427428
import Mathlib.Analysis.SpecialFunctions.Polynomials
428429
import Mathlib.Analysis.SpecialFunctions.Trigonometric.Chebyshev
429430
import Mathlib.Analysis.SpecificLimits.Basic

Mathlib/Analysis/SpecialFunctions/Exp.lean

Lines changed: 12 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -348,6 +348,18 @@ theorem tendsto_exp_comp_nhds_zero {f : α → ℝ} :
348348
simp_rw [←comp_apply (f := exp), ← tendsto_comap_iff, comap_exp_nhds_zero]
349349
#align real.tendsto_exp_comp_nhds_zero Real.tendsto_exp_comp_nhds_zero
350350

351+
-- Porting note: new lemma
352+
theorem openEmbedding_exp : OpenEmbedding exp :=
353+
isOpen_Ioi.openEmbedding_subtype_val.comp expOrderIso.toHomeomorph.openEmbedding
354+
355+
-- Porting note: new lemma; TODO: backport & make `@[simp]`
356+
theorem map_exp_nhds (x : ℝ) : map exp (𝓝 x) = 𝓝 (exp x) :=
357+
openEmbedding_exp.map_nhds_eq x
358+
359+
-- Porting note: new lemma; TODO: backport & make `@[simp]`
360+
theorem comap_exp_nhds_exp (x : ℝ) : comap exp (𝓝 (exp x)) = 𝓝 x :=
361+
(openEmbedding_exp.nhds_eq_comap x).symm
362+
351363
theorem isLittleO_pow_exp_atTop {n : ℕ} : (fun x : ℝ => x ^ n) =o[atTop] Real.exp := by
352364
simpa [isLittleO_iff_tendsto fun x hx => ((exp_pos x).ne' hx).elim] using
353365
tendsto_div_pow_mul_exp_add_atTop 1 0 n zero_ne_one

0 commit comments

Comments
 (0)