@@ -29,16 +29,19 @@ theorem infinite_of_charZero (R A : Type*) [CommRing R] [IsDomain R] [Ring A] [A
29
29
[CharZero A] : { x : A | IsAlgebraic R x }.Infinite :=
30
30
infinite_of_injective_forall_mem Nat.cast_injective isAlgebraic_nat
31
31
32
- theorem aleph0_le_cardinal_mk_of_charZero (R A : Type *) [CommRing R] [IsDomain R] [Ring A]
32
+ theorem aleph0_le_cardinalMk_of_charZero (R A : Type *) [CommRing R] [IsDomain R] [Ring A]
33
33
[Algebra R A] [CharZero A] : ℵ₀ ≤ #{ x : A // IsAlgebraic R x } :=
34
34
infinite_iff.1 (Set.infinite_coe_iff.2 <| infinite_of_charZero R A)
35
35
36
+ @[deprecated (since := "2024-11-10")]
37
+ alias aleph0_le_cardinal_mk_of_charZero := aleph0_le_cardinalMk_of_charZero
38
+
36
39
section lift
37
40
38
41
variable (R : Type u) (A : Type v) [CommRing R] [CommRing A] [IsDomain A] [Algebra R A]
39
42
[NoZeroSMulDivisors R A]
40
43
41
- theorem cardinal_mk_lift_le_mul :
44
+ theorem cardinalMk_lift_le_mul :
42
45
Cardinal.lift.{u} #{ x : A // IsAlgebraic R x } ≤ Cardinal.lift.{v} #R[X] * ℵ₀ := by
43
46
rw [← mk_uLift, ← mk_uLift]
44
47
choose g hg₁ hg₂ using fun x : { x : A | IsAlgebraic R x } => x.coe_prop
@@ -49,30 +52,40 @@ theorem cardinal_mk_lift_le_mul :
49
52
rintro x (rfl : g x = f)
50
53
exact mem_rootSet.2 ⟨hg₁ x, hg₂ x⟩
51
54
52
- theorem cardinal_mk_lift_le_max :
55
+ @[deprecated (since := "2024-11-10")] alias cardinal_mk_lift_le_mul := cardinalMk_lift_le_mul
56
+
57
+ theorem cardinalMk_lift_le_max :
53
58
Cardinal.lift.{u} #{ x : A // IsAlgebraic R x } ≤ max (Cardinal.lift.{v} #R) ℵ₀ :=
54
- (cardinal_mk_lift_le_mul R A).trans <|
55
- (mul_le_mul_right' (lift_le.2 cardinal_mk_le_max) _).trans <| by simp
59
+ (cardinalMk_lift_le_mul R A).trans <|
60
+ (mul_le_mul_right' (lift_le.2 cardinalMk_le_max) _).trans <| by simp
61
+
62
+ @[deprecated (since := "2024-11-10")] alias cardinal_mk_lift_le_max := cardinalMk_lift_le_max
56
63
57
64
@[simp]
58
- theorem cardinal_mk_lift_of_infinite [Infinite R] :
65
+ theorem cardinalMk_lift_of_infinite [Infinite R] :
59
66
Cardinal.lift.{u} #{ x : A // IsAlgebraic R x } = Cardinal.lift.{v} #R :=
60
- ((cardinal_mk_lift_le_max R A).trans_eq (max_eq_left <| aleph0_le_mk _)).antisymm <|
67
+ ((cardinalMk_lift_le_max R A).trans_eq (max_eq_left <| aleph0_le_mk _)).antisymm <|
61
68
lift_mk_le'.2 ⟨⟨fun x => ⟨algebraMap R A x, isAlgebraic_algebraMap _⟩, fun _ _ h =>
62
69
NoZeroSMulDivisors.algebraMap_injective R A (Subtype.ext_iff.1 h)⟩⟩
63
70
71
+ @[deprecated (since := "2024-11-10")]
72
+ alias cardinal_mk_lift_of_infinite := cardinalMk_lift_of_infinite
73
+
64
74
variable [Countable R]
65
75
66
76
@[simp]
67
77
protected theorem countable : Set.Countable { x : A | IsAlgebraic R x } := by
68
78
rw [← le_aleph0_iff_set_countable, ← lift_le_aleph0]
69
- apply (cardinal_mk_lift_le_max R A).trans
79
+ apply (cardinalMk_lift_le_max R A).trans
70
80
simp
71
81
72
82
@[simp]
73
- theorem cardinal_mk_of_countable_of_charZero [CharZero A] [IsDomain R] :
83
+ theorem cardinalMk_of_countable_of_charZero [CharZero A] [IsDomain R] :
74
84
#{ x : A // IsAlgebraic R x } = ℵ₀ :=
75
- (Algebraic.countable R A).le_aleph0.antisymm (aleph0_le_cardinal_mk_of_charZero R A)
85
+ (Algebraic.countable R A).le_aleph0.antisymm (aleph0_le_cardinalMk_of_charZero R A)
86
+
87
+ @[deprecated (since := "2024-11-10")]
88
+ alias cardinal_mk_of_countable_of_charZero := cardinalMk_of_countable_of_charZero
76
89
77
90
end lift
78
91
@@ -81,18 +94,24 @@ section NonLift
81
94
variable (R A : Type u) [CommRing R] [CommRing A] [IsDomain A] [Algebra R A]
82
95
[NoZeroSMulDivisors R A]
83
96
84
- theorem cardinal_mk_le_mul : #{ x : A // IsAlgebraic R x } ≤ #R[X] * ℵ₀ := by
97
+ theorem cardinalMk_le_mul : #{ x : A // IsAlgebraic R x } ≤ #R[X] * ℵ₀ := by
85
98
rw [← lift_id #_, ← lift_id #R[X]]
86
- exact cardinal_mk_lift_le_mul R A
99
+ exact cardinalMk_lift_le_mul R A
100
+
101
+ @[deprecated (since := "2024-11-10")] alias cardinal_mk_le_mul := cardinalMk_le_mul
87
102
88
103
@[stacks 09GK]
89
- theorem cardinal_mk_le_max : #{ x : A // IsAlgebraic R x } ≤ max #R ℵ₀ := by
104
+ theorem cardinalMk_le_max : #{ x : A // IsAlgebraic R x } ≤ max #R ℵ₀ := by
90
105
rw [← lift_id #_, ← lift_id #R]
91
- exact cardinal_mk_lift_le_max R A
106
+ exact cardinalMk_lift_le_max R A
107
+
108
+ @[deprecated (since := "2024-11-10")] alias cardinal_mk_le_max := cardinalMk_le_max
92
109
93
110
@[simp]
94
- theorem cardinal_mk_of_infinite [Infinite R] : #{ x : A // IsAlgebraic R x } = #R :=
95
- lift_inj.1 <| cardinal_mk_lift_of_infinite R A
111
+ theorem cardinalMk_of_infinite [Infinite R] : #{ x : A // IsAlgebraic R x } = #R :=
112
+ lift_inj.1 <| cardinalMk_lift_of_infinite R A
113
+
114
+ @[deprecated (since := "2024-11-10")] alias cardinal_mk_of_infinite := cardinalMk_of_infinite
96
115
97
116
end NonLift
98
117
0 commit comments