Skip to content

Commit 6be28eb

Browse files
committed
chore: camel cardinal_mk (#18808)
Rename `cardinal_mk` in lemma names to `cardinalMk` to follow the naming convention.
1 parent a98955e commit 6be28eb

File tree

13 files changed

+130
-61
lines changed

13 files changed

+130
-61
lines changed

Mathlib/Algebra/AlgebraicCard.lean

Lines changed: 35 additions & 16 deletions
Original file line numberDiff line numberDiff line change
@@ -29,16 +29,19 @@ theorem infinite_of_charZero (R A : Type*) [CommRing R] [IsDomain R] [Ring A] [A
2929
[CharZero A] : { x : A | IsAlgebraic R x }.Infinite :=
3030
infinite_of_injective_forall_mem Nat.cast_injective isAlgebraic_nat
3131

32-
theorem aleph0_le_cardinal_mk_of_charZero (R A : Type*) [CommRing R] [IsDomain R] [Ring A]
32+
theorem aleph0_le_cardinalMk_of_charZero (R A : Type*) [CommRing R] [IsDomain R] [Ring A]
3333
[Algebra R A] [CharZero A] : ℵ₀ ≤ #{ x : A // IsAlgebraic R x } :=
3434
infinite_iff.1 (Set.infinite_coe_iff.2 <| infinite_of_charZero R A)
3535

36+
@[deprecated (since := "2024-11-10")]
37+
alias aleph0_le_cardinal_mk_of_charZero := aleph0_le_cardinalMk_of_charZero
38+
3639
section lift
3740

3841
variable (R : Type u) (A : Type v) [CommRing R] [CommRing A] [IsDomain A] [Algebra R A]
3942
[NoZeroSMulDivisors R A]
4043

41-
theorem cardinal_mk_lift_le_mul :
44+
theorem cardinalMk_lift_le_mul :
4245
Cardinal.lift.{u} #{ x : A // IsAlgebraic R x } ≤ Cardinal.lift.{v} #R[X] * ℵ₀ := by
4346
rw [← mk_uLift, ← mk_uLift]
4447
choose g hg₁ hg₂ using fun x : { x : A | IsAlgebraic R x } => x.coe_prop
@@ -49,30 +52,40 @@ theorem cardinal_mk_lift_le_mul :
4952
rintro x (rfl : g x = f)
5053
exact mem_rootSet.2 ⟨hg₁ x, hg₂ x⟩
5154

52-
theorem cardinal_mk_lift_le_max :
55+
@[deprecated (since := "2024-11-10")] alias cardinal_mk_lift_le_mul := cardinalMk_lift_le_mul
56+
57+
theorem cardinalMk_lift_le_max :
5358
Cardinal.lift.{u} #{ x : A // IsAlgebraic R x } ≤ max (Cardinal.lift.{v} #R) ℵ₀ :=
54-
(cardinal_mk_lift_le_mul R A).trans <|
55-
(mul_le_mul_right' (lift_le.2 cardinal_mk_le_max) _).trans <| by simp
59+
(cardinalMk_lift_le_mul R A).trans <|
60+
(mul_le_mul_right' (lift_le.2 cardinalMk_le_max) _).trans <| by simp
61+
62+
@[deprecated (since := "2024-11-10")] alias cardinal_mk_lift_le_max := cardinalMk_lift_le_max
5663

5764
@[simp]
58-
theorem cardinal_mk_lift_of_infinite [Infinite R] :
65+
theorem cardinalMk_lift_of_infinite [Infinite R] :
5966
Cardinal.lift.{u} #{ x : A // IsAlgebraic R x } = Cardinal.lift.{v} #R :=
60-
((cardinal_mk_lift_le_max R A).trans_eq (max_eq_left <| aleph0_le_mk _)).antisymm <|
67+
((cardinalMk_lift_le_max R A).trans_eq (max_eq_left <| aleph0_le_mk _)).antisymm <|
6168
lift_mk_le'.2 ⟨⟨fun x => ⟨algebraMap R A x, isAlgebraic_algebraMap _⟩, fun _ _ h =>
6269
NoZeroSMulDivisors.algebraMap_injective R A (Subtype.ext_iff.1 h)⟩⟩
6370

71+
@[deprecated (since := "2024-11-10")]
72+
alias cardinal_mk_lift_of_infinite := cardinalMk_lift_of_infinite
73+
6474
variable [Countable R]
6575

6676
@[simp]
6777
protected theorem countable : Set.Countable { x : A | IsAlgebraic R x } := by
6878
rw [← le_aleph0_iff_set_countable, ← lift_le_aleph0]
69-
apply (cardinal_mk_lift_le_max R A).trans
79+
apply (cardinalMk_lift_le_max R A).trans
7080
simp
7181

7282
@[simp]
73-
theorem cardinal_mk_of_countable_of_charZero [CharZero A] [IsDomain R] :
83+
theorem cardinalMk_of_countable_of_charZero [CharZero A] [IsDomain R] :
7484
#{ x : A // IsAlgebraic R x } = ℵ₀ :=
75-
(Algebraic.countable R A).le_aleph0.antisymm (aleph0_le_cardinal_mk_of_charZero R A)
85+
(Algebraic.countable R A).le_aleph0.antisymm (aleph0_le_cardinalMk_of_charZero R A)
86+
87+
@[deprecated (since := "2024-11-10")]
88+
alias cardinal_mk_of_countable_of_charZero := cardinalMk_of_countable_of_charZero
7689

7790
end lift
7891

@@ -81,18 +94,24 @@ section NonLift
8194
variable (R A : Type u) [CommRing R] [CommRing A] [IsDomain A] [Algebra R A]
8295
[NoZeroSMulDivisors R A]
8396

84-
theorem cardinal_mk_le_mul : #{ x : A // IsAlgebraic R x } ≤ #R[X] * ℵ₀ := by
97+
theorem cardinalMk_le_mul : #{ x : A // IsAlgebraic R x } ≤ #R[X] * ℵ₀ := by
8598
rw [← lift_id #_, ← lift_id #R[X]]
86-
exact cardinal_mk_lift_le_mul R A
99+
exact cardinalMk_lift_le_mul R A
100+
101+
@[deprecated (since := "2024-11-10")] alias cardinal_mk_le_mul := cardinalMk_le_mul
87102

88103
@[stacks 09GK]
89-
theorem cardinal_mk_le_max : #{ x : A // IsAlgebraic R x } ≤ max #R ℵ₀ := by
104+
theorem cardinalMk_le_max : #{ x : A // IsAlgebraic R x } ≤ max #R ℵ₀ := by
90105
rw [← lift_id #_, ← lift_id #R]
91-
exact cardinal_mk_lift_le_max R A
106+
exact cardinalMk_lift_le_max R A
107+
108+
@[deprecated (since := "2024-11-10")] alias cardinal_mk_le_max := cardinalMk_le_max
92109

93110
@[simp]
94-
theorem cardinal_mk_of_infinite [Infinite R] : #{ x : A // IsAlgebraic R x } = #R :=
95-
lift_inj.1 <| cardinal_mk_lift_of_infinite R A
111+
theorem cardinalMk_of_infinite [Infinite R] : #{ x : A // IsAlgebraic R x } = #R :=
112+
lift_inj.1 <| cardinalMk_lift_of_infinite R A
113+
114+
@[deprecated (since := "2024-11-10")] alias cardinal_mk_of_infinite := cardinalMk_of_infinite
96115

97116
end NonLift
98117

Mathlib/Algebra/MvPolynomial/Cardinal.lean

Lines changed: 15 additions & 7 deletions
Original file line numberDiff line numberDiff line change
@@ -10,7 +10,7 @@ import Mathlib.SetTheory.Cardinal.Finsupp
1010
/-!
1111
# Cardinality of Multivariate Polynomial Ring
1212
13-
The main result in this file is `MvPolynomial.cardinal_mk_le_max`, which says that
13+
The main result in this file is `MvPolynomial.cardinalMk_le_max`, which says that
1414
the cardinality of `MvPolynomial σ R` is bounded above by the maximum of `#R`, `#σ`
1515
and `ℵ₀`.
1616
-/
@@ -29,33 +29,41 @@ section TwoUniverses
2929
variable {σ : Type u} {R : Type v} [CommSemiring R]
3030

3131
@[simp]
32-
theorem cardinal_mk_eq_max_lift [Nonempty σ] [Nontrivial R] :
32+
theorem cardinalMk_eq_max_lift [Nonempty σ] [Nontrivial R] :
3333
#(MvPolynomial σ R) = max (max (Cardinal.lift.{u} #R) <| Cardinal.lift.{v} #σ) ℵ₀ :=
3434
(mk_finsupp_lift_of_infinite _ R).trans <| by
3535
rw [mk_finsupp_nat, max_assoc, lift_max, lift_aleph0, max_comm]
3636

37+
@[deprecated (since := "2024-11-10")] alias cardinal_mk_eq_max_lift := cardinalMk_eq_max_lift
38+
3739
@[simp]
38-
theorem cardinal_mk_eq_lift [IsEmpty σ] : #(MvPolynomial σ R) = Cardinal.lift.{u} #R :=
40+
theorem cardinalMk_eq_lift [IsEmpty σ] : #(MvPolynomial σ R) = Cardinal.lift.{u} #R :=
3941
((isEmptyRingEquiv R σ).toEquiv.trans Equiv.ulift.{u}.symm).cardinal_eq
4042

43+
@[deprecated (since := "2024-11-10")] alias cardinal_mk_eq_lift := cardinalMk_eq_lift
44+
4145
theorem cardinal_lift_mk_le_max {σ : Type u} {R : Type v} [CommSemiring R] : #(MvPolynomial σ R) ≤
4246
max (max (Cardinal.lift.{u} #R) <| Cardinal.lift.{v} #σ) ℵ₀ := by
4347
cases subsingleton_or_nontrivial R
4448
· exact (mk_eq_one _).trans_le (le_max_of_le_right one_le_aleph0)
4549
cases isEmpty_or_nonempty σ
46-
· exact cardinal_mk_eq_lift.trans_le (le_max_of_le_left <| le_max_left _ _)
47-
· exact cardinal_mk_eq_max_lift.le
50+
· exact cardinalMk_eq_lift.trans_le (le_max_of_le_left <| le_max_left _ _)
51+
· exact cardinalMk_eq_max_lift.le
4852

4953
end TwoUniverses
5054

5155
variable {σ R : Type u} [CommSemiring R]
5256

53-
theorem cardinal_mk_eq_max [Nonempty σ] [Nontrivial R] :
57+
theorem cardinalMk_eq_max [Nonempty σ] [Nontrivial R] :
5458
#(MvPolynomial σ R) = max (max #R #σ) ℵ₀ := by simp
5559

60+
@[deprecated (since := "2024-11-10")] alias cardinal_mk_eq_max := cardinalMk_eq_max
61+
5662
/-- The cardinality of the multivariate polynomial ring, `MvPolynomial σ R` is at most the maximum
5763
of `#R`, `#σ` and `ℵ₀` -/
58-
theorem cardinal_mk_le_max : #(MvPolynomial σ R) ≤ max (max #R #σ) ℵ₀ :=
64+
theorem cardinalMk_le_max : #(MvPolynomial σ R) ≤ max (max #R #σ) ℵ₀ :=
5965
cardinal_lift_mk_le_max.trans <| by rw [lift_id, lift_id]
6066

67+
@[deprecated (since := "2024-11-10")] alias cardinal_mk_le_max := cardinalMk_le_max
68+
6169
end MvPolynomial

Mathlib/Algebra/Polynomial/Cardinal.lean

Lines changed: 7 additions & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -23,14 +23,18 @@ open Cardinal
2323
namespace Polynomial
2424

2525
@[simp]
26-
theorem cardinal_mk_eq_max {R : Type u} [Semiring R] [Nontrivial R] : #(R[X]) = max #R ℵ₀ :=
26+
theorem cardinalMk_eq_max {R : Type u} [Semiring R] [Nontrivial R] : #(R[X]) = max #R ℵ₀ :=
2727
(toFinsuppIso R).toEquiv.cardinal_eq.trans <| by
2828
rw [AddMonoidAlgebra, mk_finsupp_lift_of_infinite, lift_uzero, max_comm]
2929
rfl
3030

31-
theorem cardinal_mk_le_max {R : Type u} [Semiring R] : #(R[X]) ≤ max #R ℵ₀ := by
31+
@[deprecated (since := "2024-11-10")] alias cardinal_mk_eq_max := cardinalMk_eq_max
32+
33+
theorem cardinalMk_le_max {R : Type u} [Semiring R] : #(R[X]) ≤ max #R ℵ₀ := by
3234
cases subsingleton_or_nontrivial R
3335
· exact (mk_eq_one _).trans_le (le_max_of_le_right one_le_aleph0)
34-
· exact cardinal_mk_eq_max.le
36+
· exact cardinalMk_eq_max.le
37+
38+
@[deprecated (since := "2024-11-10")] alias cardinal_mk_le_max := cardinalMk_le_max
3539

3640
end Polynomial

Mathlib/Data/W/Cardinal.lean

Lines changed: 25 additions & 11 deletions
Original file line numberDiff line numberDiff line change
@@ -10,7 +10,7 @@ import Mathlib.SetTheory.Cardinal.Arithmetic
1010
# Cardinality of W-types
1111
1212
This file proves some theorems about the cardinality of W-types. The main result is
13-
`cardinal_mk_le_max_aleph0_of_finite` which says that if for any `a : α`,
13+
`cardinalMk_le_max_aleph0_of_finite` which says that if for any `a : α`,
1414
`β a` is finite, then the cardinality of `WType β` is at most the maximum of the
1515
cardinality of `α` and `ℵ₀`.
1616
This can be used to prove theorems about the cardinality of algebraic constructions such as
@@ -34,12 +34,14 @@ namespace WType
3434
open Cardinal
3535

3636

37-
theorem cardinal_mk_eq_sum' : #(WType β) = sum (fun a : α => #(WType β) ^ lift.{u} #(β a)) :=
37+
theorem cardinalMk_eq_sum_lift : #(WType β) = sum fun a #(WType β) ^ lift.{u} #(β a) :=
3838
(mk_congr <| equivSigma β).trans <| by
3939
simp_rw [mk_sigma, mk_arrow]; rw [lift_id'.{v, u}, lift_umax.{v, u}]
4040

41+
@[deprecated (since := "2024-11-10")] alias cardinal_mk_eq_sum' := cardinalMk_eq_sum_lift
42+
4143
/-- `#(WType β)` is the least cardinal `κ` such that `sum (fun a : α ↦ κ ^ #(β a)) ≤ κ` -/
42-
theorem cardinal_mk_le_of_le' {κ : Cardinal.{max u v}}
44+
theorem cardinalMk_le_of_le' {κ : Cardinal.{max u v}}
4345
(hκ : (sum fun a : α => κ ^ lift.{u} #(β a)) ≤ κ) :
4446
#(WType β) ≤ κ := by
4547
induction' κ using Cardinal.inductionOn with γ
@@ -49,9 +51,11 @@ theorem cardinal_mk_le_of_le' {κ : Cardinal.{max u v}}
4951
cases' hκ with
5052
exact Cardinal.mk_le_of_injective (elim_injective _ hκ.1 hκ.2)
5153

54+
@[deprecated (since := "2024-11-10")] alias cardinal_mk_le_of_le' := cardinalMk_le_of_le'
55+
5256
/-- If, for any `a : α`, `β a` is finite, then the cardinality of `WType β`
5357
is at most the maximum of the cardinality of `α` and `ℵ₀` -/
54-
theorem cardinal_mk_le_max_aleph0_of_finite' [∀ a, Finite (β a)] :
58+
theorem cardinalMk_le_max_aleph0_of_finite' [∀ a, Finite (β a)] :
5559
#(WType β) ≤ max (lift.{v} #α) ℵ₀ :=
5660
(isEmpty_or_nonempty α).elim
5761
(by
@@ -60,7 +64,7 @@ theorem cardinal_mk_le_max_aleph0_of_finite' [∀ a, Finite (β a)] :
6064
exact zero_le _)
6165
fun hn =>
6266
let m := max (lift.{v} #α) ℵ₀
63-
cardinal_mk_le_of_le' <|
67+
cardinalMk_le_of_le' <|
6468
calc
6569
(Cardinal.sum fun a => m ^ lift.{u} #(β a)) ≤ lift.{v} #α * ⨆ a, m ^ lift.{u} #(β a) :=
6670
Cardinal.sum_le_iSup_lift _
@@ -79,18 +83,28 @@ theorem cardinal_mk_le_max_aleph0_of_finite' [∀ a, Finite (β a)] :
7983
power_le_power_left
8084
(pos_iff_ne_zero.1 (aleph0_pos.trans_le (le_max_right _ _))) (zero_le _))
8185

86+
@[deprecated (since := "2024-11-10")]
87+
alias cardinal_mk_le_max_aleph0_of_finite' := cardinalMk_le_max_aleph0_of_finite'
88+
8289
variable {β : α → Type u}
8390

84-
theorem cardinal_mk_eq_sum : #(WType β) = sum (fun a : α => #(WType β) ^ #(β a)) :=
85-
cardinal_mk_eq_sum'.trans <| by simp_rw [lift_id]
91+
theorem cardinalMk_eq_sum : #(WType β) = sum (fun a : α => #(WType β) ^ #(β a)) :=
92+
cardinalMk_eq_sum_lift.trans <| by simp_rw [lift_id]
93+
94+
@[deprecated (since := "2024-11-10")] alias cardinal_mk_eq_sum := cardinalMk_eq_sum
8695

8796
/-- `#(WType β)` is the least cardinal `κ` such that `sum (fun a : α ↦ κ ^ #(β a)) ≤ κ` -/
88-
theorem cardinal_mk_le_of_le {κ : Cardinal.{u}} (hκ : (sum fun a : α => κ ^ #(β a)) ≤ κ) :
89-
#(WType β) ≤ κ := cardinal_mk_le_of_le' <| by simp_rw [lift_id]; exact hκ
97+
theorem cardinalMk_le_of_le {κ : Cardinal.{u}} (hκ : (sum fun a : α => κ ^ #(β a)) ≤ κ) :
98+
#(WType β) ≤ κ := cardinalMk_le_of_le' <| by simp_rw [lift_id]; exact hκ
99+
100+
@[deprecated (since := "2024-11-10")] alias cardinal_mk_le_of_le := cardinalMk_le_of_le
90101

91102
/-- If, for any `a : α`, `β a` is finite, then the cardinality of `WType β`
92103
is at most the maximum of the cardinality of `α` and `ℵ₀` -/
93-
theorem cardinal_mk_le_max_aleph0_of_finite [∀ a, Finite (β a)] : #(WType β) ≤ max #α ℵ₀ :=
94-
cardinal_mk_le_max_aleph0_of_finite'.trans_eq <| by rw [lift_id]
104+
theorem cardinalMk_le_max_aleph0_of_finite [∀ a, Finite (β a)] : #(WType β) ≤ max #α ℵ₀ :=
105+
cardinalMk_le_max_aleph0_of_finite'.trans_eq <| by rw [lift_id]
106+
107+
@[deprecated (since := "2024-11-10")]
108+
alias cardinal_mk_le_max_aleph0_of_finite := cardinalMk_le_max_aleph0_of_finite
95109

96110
end WType

Mathlib/FieldTheory/Fixed.lean

Lines changed: 4 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -296,10 +296,12 @@ theorem linearIndependent_toLinearMap (R : Type u) (A : Type v) (B : Type w) [Co
296296
_)
297297
this.of_comp _
298298

299-
theorem cardinal_mk_algHom (K : Type u) (V : Type v) (W : Type w) [Field K] [Field V] [Algebra K V]
299+
theorem cardinalMk_algHom (K : Type u) (V : Type v) (W : Type w) [Field K] [Field V] [Algebra K V]
300300
[FiniteDimensional K V] [Field W] [Algebra K W] :
301301
Cardinal.mk (V →ₐ[K] W) ≤ finrank W (V →ₗ[K] W) :=
302-
(linearIndependent_toLinearMap K V W).cardinal_mk_le_finrank
302+
(linearIndependent_toLinearMap K V W).cardinalMk_le_finrank
303+
304+
@[deprecated (since := "2024-11-10")] alias cardinal_mk_algHom := cardinalMk_algHom
303305

304306
noncomputable instance AlgEquiv.fintype (K : Type u) (V : Type v) [Field K] [Field V] [Algebra K V]
305307
[FiniteDimensional K V] : Fintype (V ≃ₐ[K] V) :=

Mathlib/FieldTheory/IsAlgClosed/Classification.lean

Lines changed: 11 additions & 6 deletions
Original file line numberDiff line numberDiff line change
@@ -36,7 +36,7 @@ namespace Algebra.IsAlgebraic
3636
variable (R L : Type u) [CommRing R] [CommRing L] [IsDomain L] [Algebra R L]
3737
variable [NoZeroSMulDivisors R L] [Algebra.IsAlgebraic R L]
3838

39-
theorem cardinal_mk_le_sigma_polynomial :
39+
theorem cardinalMk_le_sigma_polynomial :
4040
#L ≤ #(Σ p : R[X], { x : L // x ∈ p.aroots L }) :=
4141
@mk_le_of_injective L (Σ p : R[X], {x : L | x ∈ p.aroots L})
4242
(fun x : L =>
@@ -56,23 +56,28 @@ theorem cardinal_mk_le_sigma_polynomial :
5656
refine (Subtype.heq_iff_coe_eq ?_).1 h.2
5757
simp only [h.1, forall_true_iff]
5858

59+
@[deprecated (since := "2024-11-10")]
60+
alias cardinal_mk_le_sigma_polynomial := cardinalMk_le_sigma_polynomial
61+
5962
/-- The cardinality of an algebraic extension is at most the maximum of the cardinality
6063
of the base ring or `ℵ₀`. -/
6164
@[stacks 09GK]
62-
theorem cardinal_mk_le_max : #L ≤ max #R ℵ₀ :=
65+
theorem cardinalMk_le_max : #L ≤ max #R ℵ₀ :=
6366
calc
6467
#L ≤ #(Σ p : R[X], { x : L // x ∈ p.aroots L }) :=
65-
cardinal_mk_le_sigma_polynomial R L
68+
cardinalMk_le_sigma_polynomial R L
6669
_ = Cardinal.sum fun p : R[X] => #{x : L | x ∈ p.aroots L} := by
6770
rw [← mk_sigma]; rfl
6871
_ ≤ Cardinal.sum.{u, u} fun _ : R[X] => ℵ₀ :=
6972
(sum_le_sum _ _ fun _ => (Multiset.finite_toSet _).lt_aleph0.le)
7073
_ = #(R[X]) * ℵ₀ := sum_const' _ _
7174
_ ≤ max (max #(R[X]) ℵ₀) ℵ₀ := mul_le_max _ _
7275
_ ≤ max (max (max #R ℵ₀) ℵ₀) ℵ₀ :=
73-
(max_le_max (max_le_max Polynomial.cardinal_mk_le_max le_rfl) le_rfl)
76+
(max_le_max (max_le_max Polynomial.cardinalMk_le_max le_rfl) le_rfl)
7477
_ = max #R ℵ₀ := by simp only [max_assoc, max_comm ℵ₀, max_left_comm ℵ₀, max_self]
7578

79+
@[deprecated (since := "2024-11-10")] alias cardinal_mk_le_max := cardinalMk_le_max
80+
7681
end Algebra.IsAlgebraic
7782

7883
end AlgebraicClosure
@@ -128,9 +133,9 @@ theorem cardinal_le_max_transcendence_basis (hv : IsTranscendenceBasis R v) :
128133
calc
129134
#K ≤ max #(Algebra.adjoin R (Set.range v)) ℵ₀ :=
130135
letI := isAlgClosure_of_transcendence_basis v hv
131-
Algebra.IsAlgebraic.cardinal_mk_le_max _ _
136+
Algebra.IsAlgebraic.cardinalMk_le_max _ _
132137
_ = max #(MvPolynomial ι R) ℵ₀ := by rw [Cardinal.eq.2 ⟨hv.1.aevalEquiv.toEquiv⟩]
133-
_ ≤ max (max (max #R #ι) ℵ₀) ℵ₀ := max_le_max MvPolynomial.cardinal_mk_le_max le_rfl
138+
_ ≤ max (max (max #R #ι) ℵ₀) ℵ₀ := max_le_max MvPolynomial.cardinalMk_le_max le_rfl
134139
_ = _ := by simp [max_assoc]
135140

136141
/-- If `K` is an uncountable algebraically closed field, then its

Mathlib/LinearAlgebra/Dimension/DivisionRing.lean

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -234,7 +234,7 @@ theorem max_aleph0_card_le_rank_fun_nat : max ℵ₀ #K ≤ Module.rank K (ℕ
234234
obtain ⟨⟨ιK, bK⟩⟩ := Module.Free.exists_basis (R := K) (M := ℕ → K)
235235
let L := Subfield.closure (Set.range (fun i : ιK × ℕ ↦ bK i.1 i.2))
236236
have hLK : #L < #K := by
237-
refine (Subfield.cardinal_mk_closure_le_max _).trans_lt
237+
refine (Subfield.cardinalMk_closure_le_max _).trans_lt
238238
(max_lt_iff.mpr ⟨mk_range_le.trans_lt ?_, card_K⟩)
239239
rwa [mk_prod, ← aleph0, lift_uzero, bK.mk_eq_rank'', mul_aleph0_eq aleph0_le]
240240
letI := Module.compHom K (RingHom.op L.subtype)

Mathlib/LinearAlgebra/Dimension/Finite.lean

Lines changed: 4 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -158,15 +158,17 @@ end
158158
namespace LinearIndependent
159159
variable [StrongRankCondition R]
160160

161-
theorem cardinal_mk_le_finrank [Module.Finite R M]
161+
theorem cardinalMk_le_finrank [Module.Finite R M]
162162
{ι : Type w} {b : ι → M} (h : LinearIndependent R b) : #ι ≤ finrank R M := by
163163
rw [← lift_le.{max v w}]
164164
simpa only [← finrank_eq_rank, lift_natCast, lift_le_nat_iff] using h.cardinal_lift_le_rank
165165

166+
@[deprecated (since := "2024-11-10")] alias cardinal_mk_le_finrank := cardinalMk_le_finrank
167+
166168
theorem fintype_card_le_finrank [Module.Finite R M]
167169
{ι : Type*} [Fintype ι] {b : ι → M} (h : LinearIndependent R b) :
168170
Fintype.card ι ≤ finrank R M := by
169-
simpa using h.cardinal_mk_le_finrank
171+
simpa using h.cardinalMk_le_finrank
170172

171173
theorem finset_card_le_finrank [Module.Finite R M]
172174
{b : Finset M} (h : LinearIndependent R (fun x => x : b → M)) :

Mathlib/LinearAlgebra/Dimension/FreeAndStrongRankCondition.lean

Lines changed: 11 additions & 4 deletions
Original file line numberDiff line numberDiff line change
@@ -214,7 +214,7 @@ theorem Module.finrank_le_one_iff_top_isPrincipal [Module.Free K V] [Module.Fini
214214
rw [← Module.rank_le_one_iff_top_isPrincipal, ← finrank_eq_rank, Nat.cast_le_one]
215215

216216
variable (K V) in
217-
theorem lift_cardinal_mk_eq_lift_cardinal_mk_field_pow_lift_rank [Module.Free K V]
217+
theorem lift_cardinalMk_eq_lift_cardinalMk_field_pow_lift_rank [Module.Free K V]
218218
[Module.Finite K V] : lift.{u} #V = lift.{v} #K ^ lift.{u} (Module.rank K V) := by
219219
haveI := nontrivial_of_invariantBasisNumber K
220220
obtain ⟨s, hs⟩ := Module.Free.exists_basis (R := K) (M := V)
@@ -226,15 +226,22 @@ theorem lift_cardinal_mk_eq_lift_cardinal_mk_field_pow_lift_rank [Module.Free K
226226
rwa [Finsupp.equivFunOnFinite.cardinal_eq, mk_arrow, hs.mk_eq_rank'', lift_power, lift_lift,
227227
lift_lift, lift_umax'] at this
228228

229-
theorem cardinal_mk_eq_cardinal_mk_field_pow_rank (K V : Type u) [Ring K] [StrongRankCondition K]
229+
@[deprecated (since := "2024-11-10")]
230+
alias lift_cardinal_mk_eq_lift_cardinal_mk_field_pow_lift_rank :=
231+
lift_cardinalMk_eq_lift_cardinalMk_field_pow_lift_rank
232+
233+
theorem cardinalMk_eq_cardinalMk_field_pow_rank (K V : Type u) [Ring K] [StrongRankCondition K]
230234
[AddCommGroup V] [Module K V] [Module.Free K V] [Module.Finite K V] :
231235
#V = #K ^ Module.rank K V := by
232-
simpa using lift_cardinal_mk_eq_lift_cardinal_mk_field_pow_lift_rank K V
236+
simpa using lift_cardinalMk_eq_lift_cardinalMk_field_pow_lift_rank K V
237+
238+
@[deprecated (since := "2024-11-10")]
239+
alias cardinal_mk_eq_cardinal_mk_field_pow_rank := cardinalMk_eq_cardinalMk_field_pow_rank
233240

234241
variable (K V) in
235242
theorem cardinal_lt_aleph0_of_finiteDimensional [Finite K] [Module.Free K V] [Module.Finite K V] :
236243
#V < ℵ₀ := by
237-
rw [← lift_lt_aleph0.{v, u}, lift_cardinal_mk_eq_lift_cardinal_mk_field_pow_lift_rank K V]
244+
rw [← lift_lt_aleph0.{v, u}, lift_cardinalMk_eq_lift_cardinalMk_field_pow_lift_rank K V]
238245
exact power_lt_aleph0 (lift_lt_aleph0.2 (lt_aleph0_of_finite K))
239246
(lift_lt_aleph0.2 (rank_lt_aleph0 K V))
240247

0 commit comments

Comments
 (0)