@@ -70,7 +70,7 @@ this quantity is finite -/
70
70
def eLpNorm' {_ : MeasurableSpace α} (f : α → ε) (q : ℝ) (μ : Measure α) : ℝ≥0 ∞ :=
71
71
(∫⁻ a, ‖f a‖ₑ ^ q ∂μ) ^ (1 / q)
72
72
73
- lemma eLpNorm'_eq_lintegral_enorm {_ : MeasurableSpace α} (f : α → F ) (q : ℝ) (μ : Measure α) :
73
+ lemma eLpNorm'_eq_lintegral_enorm {_ : MeasurableSpace α} (f : α → ε ) (q : ℝ) (μ : Measure α) :
74
74
eLpNorm' f q μ = (∫⁻ a, ‖f a‖ₑ ^ q ∂μ) ^ (1 / q) :=
75
75
rfl
76
76
@@ -81,7 +81,7 @@ alias eLpNorm'_eq_lintegral_nnnorm := eLpNorm'_eq_lintegral_enorm
81
81
def eLpNormEssSup {_ : MeasurableSpace α} (f : α → ε) (μ : Measure α) :=
82
82
essSup (fun x => ‖f x‖ₑ) μ
83
83
84
- lemma eLpNormEssSup_eq_essSup_enorm {_ : MeasurableSpace α} (f : α → F ) (μ : Measure α) :
84
+ lemma eLpNormEssSup_eq_essSup_enorm {_ : MeasurableSpace α} (f : α → ε ) (μ : Measure α) :
85
85
eLpNormEssSup f μ = essSup (‖f ·‖ₑ) μ := rfl
86
86
87
87
@[deprecated (since := "2025-01-17")]
@@ -93,53 +93,53 @@ def eLpNorm {_ : MeasurableSpace α}
93
93
(f : α → ε) (p : ℝ≥0 ∞) (μ : Measure α := by volume_tac) : ℝ≥0 ∞ :=
94
94
if p = 0 then 0 else if p = ∞ then eLpNormEssSup f μ else eLpNorm' f (ENNReal.toReal p) μ
95
95
96
- theorem eLpNorm_eq_eLpNorm' (hp_ne_zero : p ≠ 0 ) (hp_ne_top : p ≠ ∞) {f : α → F } :
96
+ theorem eLpNorm_eq_eLpNorm' (hp_ne_zero : p ≠ 0 ) (hp_ne_top : p ≠ ∞) {f : α → ε } :
97
97
eLpNorm f p μ = eLpNorm' f (ENNReal.toReal p) μ := by simp [eLpNorm, hp_ne_zero, hp_ne_top]
98
98
99
- lemma eLpNorm_nnreal_eq_eLpNorm' {f : α → F } {p : ℝ≥0 } (hp : p ≠ 0 ) :
99
+ lemma eLpNorm_nnreal_eq_eLpNorm' {f : α → ε } {p : ℝ≥0 } (hp : p ≠ 0 ) :
100
100
eLpNorm f p μ = eLpNorm' f p μ :=
101
101
eLpNorm_eq_eLpNorm' (by exact_mod_cast hp) ENNReal.coe_ne_top
102
102
103
- theorem eLpNorm_eq_lintegral_rpow_enorm (hp_ne_zero : p ≠ 0 ) (hp_ne_top : p ≠ ∞) {f : α → F } :
103
+ theorem eLpNorm_eq_lintegral_rpow_enorm (hp_ne_zero : p ≠ 0 ) (hp_ne_top : p ≠ ∞) {f : α → ε } :
104
104
eLpNorm f p μ = (∫⁻ x, ‖f x‖ₑ ^ p.toReal ∂μ) ^ (1 / p.toReal) := by
105
105
rw [eLpNorm_eq_eLpNorm' hp_ne_zero hp_ne_top, eLpNorm'_eq_lintegral_enorm]
106
106
107
107
@[deprecated (since := "2025-01-17")]
108
108
alias eLpNorm_eq_lintegral_rpow_nnnorm := eLpNorm_eq_lintegral_rpow_enorm
109
109
110
- lemma eLpNorm_nnreal_eq_lintegral {f : α → F } {p : ℝ≥0 } (hp : p ≠ 0 ) :
110
+ lemma eLpNorm_nnreal_eq_lintegral {f : α → ε } {p : ℝ≥0 } (hp : p ≠ 0 ) :
111
111
eLpNorm f p μ = (∫⁻ x, ‖f x‖ₑ ^ (p : ℝ) ∂μ) ^ (1 / (p : ℝ)) :=
112
112
eLpNorm_nnreal_eq_eLpNorm' hp
113
113
114
- theorem eLpNorm_one_eq_lintegral_enorm {f : α → F } : eLpNorm f 1 μ = ∫⁻ x, ‖f x‖ₑ ∂μ := by
114
+ theorem eLpNorm_one_eq_lintegral_enorm {f : α → ε } : eLpNorm f 1 μ = ∫⁻ x, ‖f x‖ₑ ∂μ := by
115
115
simp_rw [eLpNorm_eq_lintegral_rpow_enorm one_ne_zero ENNReal.coe_ne_top, ENNReal.one_toReal,
116
116
one_div_one, ENNReal.rpow_one]
117
117
118
118
@[deprecated (since := "2025-01-17")]
119
119
alias eLpNorm_one_eq_lintegral_nnnorm := eLpNorm_one_eq_lintegral_enorm
120
120
121
121
@[simp]
122
- theorem eLpNorm_exponent_top {f : α → F } : eLpNorm f ∞ μ = eLpNormEssSup f μ := by simp [eLpNorm]
122
+ theorem eLpNorm_exponent_top {f : α → ε } : eLpNorm f ∞ μ = eLpNormEssSup f μ := by simp [eLpNorm]
123
123
124
124
/-- The property that `f:α→E` is ae strongly measurable and `(∫ ‖f a‖^p ∂μ)^(1/p)` is finite
125
125
if `p < ∞`, or `essSup f < ∞` if `p = ∞`. -/
126
126
def Memℒp {α} {_ : MeasurableSpace α} [TopologicalSpace ε] (f : α → ε) (p : ℝ≥0 ∞)
127
127
(μ : Measure α := by volume_tac) : Prop :=
128
128
AEStronglyMeasurable f μ ∧ eLpNorm f p μ < ∞
129
129
130
- theorem Memℒp.aestronglyMeasurable {f : α → E } {p : ℝ≥0 ∞} (h : Memℒp f p μ) :
130
+ theorem Memℒp.aestronglyMeasurable [TopologicalSpace ε] {f : α → ε } {p : ℝ≥0 ∞} (h : Memℒp f p μ) :
131
131
AEStronglyMeasurable f μ :=
132
132
h.1
133
133
134
- theorem lintegral_rpow_enorm_eq_rpow_eLpNorm' {f : α → F } (hq0_lt : 0 < q) :
134
+ theorem lintegral_rpow_enorm_eq_rpow_eLpNorm' {f : α → ε } (hq0_lt : 0 < q) :
135
135
∫⁻ a, ‖f a‖ₑ ^ q ∂μ = eLpNorm' f q μ ^ q := by
136
136
rw [eLpNorm'_eq_lintegral_enorm, ← ENNReal.rpow_mul, one_div, inv_mul_cancel₀, ENNReal.rpow_one]
137
137
exact hq0_lt.ne'
138
138
139
139
@[deprecated (since := "2025-01-17")]
140
140
alias lintegral_rpow_nnnorm_eq_rpow_eLpNorm' := lintegral_rpow_enorm_eq_rpow_eLpNorm'
141
141
142
- lemma eLpNorm_nnreal_pow_eq_lintegral {f : α → F } {p : ℝ≥0 } (hp : p ≠ 0 ) :
142
+ lemma eLpNorm_nnreal_pow_eq_lintegral {f : α → ε } {p : ℝ≥0 } (hp : p ≠ 0 ) :
143
143
eLpNorm f p μ ^ (p : ℝ) = ∫⁻ x, ‖f x‖ₑ ^ (p : ℝ) ∂μ := by
144
144
simp [eLpNorm_eq_eLpNorm' (by exact_mod_cast hp) ENNReal.coe_ne_top,
145
145
lintegral_rpow_enorm_eq_rpow_eLpNorm' ((NNReal.coe_pos.trans pos_iff_ne_zero).mpr hp)]
@@ -148,13 +148,15 @@ end ℒpSpaceDefinition
148
148
149
149
section Top
150
150
151
- theorem Memℒp.eLpNorm_lt_top {f : α → E} (hfp : Memℒp f p μ) : eLpNorm f p μ < ∞ :=
151
+ theorem Memℒp.eLpNorm_lt_top [TopologicalSpace ε] {f : α → ε} (hfp : Memℒp f p μ) :
152
+ eLpNorm f p μ < ∞ :=
152
153
hfp.2
153
154
154
- theorem Memℒp.eLpNorm_ne_top {f : α → E} (hfp : Memℒp f p μ) : eLpNorm f p μ ≠ ∞ :=
155
+ theorem Memℒp.eLpNorm_ne_top [TopologicalSpace ε] {f : α → ε} (hfp : Memℒp f p μ) :
156
+ eLpNorm f p μ ≠ ∞ :=
155
157
ne_of_lt hfp.2
156
158
157
- theorem lintegral_rpow_enorm_lt_top_of_eLpNorm'_lt_top {f : α → F } (hq0_lt : 0 < q)
159
+ theorem lintegral_rpow_enorm_lt_top_of_eLpNorm'_lt_top {f : α → ε } (hq0_lt : 0 < q)
158
160
(hfq : eLpNorm' f q μ < ∞) : ∫⁻ a, ‖f a‖ₑ ^ q ∂μ < ∞ := by
159
161
rw [lintegral_rpow_enorm_eq_rpow_eLpNorm' hq0_lt]
160
162
exact ENNReal.rpow_lt_top_of_nonneg (le_of_lt hq0_lt) (ne_of_lt hfq)
@@ -163,7 +165,7 @@ theorem lintegral_rpow_enorm_lt_top_of_eLpNorm'_lt_top {f : α → F} (hq0_lt :
163
165
alias lintegral_rpow_nnnorm_lt_top_of_eLpNorm'_lt_top' :=
164
166
lintegral_rpow_enorm_lt_top_of_eLpNorm'_lt_top
165
167
166
- theorem lintegral_rpow_enorm_lt_top_of_eLpNorm_lt_top {f : α → F } (hp_ne_zero : p ≠ 0 )
168
+ theorem lintegral_rpow_enorm_lt_top_of_eLpNorm_lt_top {f : α → ε } (hp_ne_zero : p ≠ 0 )
167
169
(hp_ne_top : p ≠ ∞) (hfp : eLpNorm f p μ < ∞) : ∫⁻ a, ‖f a‖ₑ ^ p.toReal ∂μ < ∞ := by
168
170
apply lintegral_rpow_enorm_lt_top_of_eLpNorm'_lt_top
169
171
· exact ENNReal.toReal_pos hp_ne_zero hp_ne_top
@@ -173,7 +175,7 @@ theorem lintegral_rpow_enorm_lt_top_of_eLpNorm_lt_top {f : α → F} (hp_ne_zero
173
175
alias lintegral_rpow_nnnorm_lt_top_of_eLpNorm_lt_top :=
174
176
lintegral_rpow_enorm_lt_top_of_eLpNorm_lt_top
175
177
176
- theorem eLpNorm_lt_top_iff_lintegral_rpow_nnnorm_lt_top {f : α → F } (hp_ne_zero : p ≠ 0 )
178
+ theorem eLpNorm_lt_top_iff_lintegral_rpow_nnnorm_lt_top {f : α → ε } (hp_ne_zero : p ≠ 0 )
177
179
(hp_ne_top : p ≠ ∞) : eLpNorm f p μ < ∞ ↔ ∫⁻ a, (‖f a‖ₑ) ^ p.toReal ∂μ < ∞ :=
178
180
⟨lintegral_rpow_enorm_lt_top_of_eLpNorm_lt_top hp_ne_zero hp_ne_top, by
179
181
intro h
@@ -187,14 +189,14 @@ end Top
187
189
section Zero
188
190
189
191
@[simp]
190
- theorem eLpNorm'_exponent_zero {f : α → F } : eLpNorm' f 0 μ = 1 := by
192
+ theorem eLpNorm'_exponent_zero {f : α → ε } : eLpNorm' f 0 μ = 1 := by
191
193
rw [eLpNorm', div_zero, ENNReal.rpow_zero]
192
194
193
195
@[simp]
194
- theorem eLpNorm_exponent_zero {f : α → F } : eLpNorm f 0 μ = 0 := by simp [eLpNorm]
196
+ theorem eLpNorm_exponent_zero {f : α → ε } : eLpNorm f 0 μ = 0 := by simp [eLpNorm]
195
197
196
198
@[simp]
197
- theorem memℒp_zero_iff_aestronglyMeasurable {f : α → E } :
199
+ theorem memℒp_zero_iff_aestronglyMeasurable [TopologicalSpace ε] {f : α → ε } :
198
200
Memℒp f 0 μ ↔ AEStronglyMeasurable f μ := by simp [Memℒp, eLpNorm_exponent_zero]
199
201
200
202
@[simp]
@@ -233,29 +235,30 @@ theorem eLpNorm_zero' : eLpNorm (fun _ : α => (0 : F)) p μ = 0 := by convert e
233
235
234
236
variable [MeasurableSpace α]
235
237
236
- theorem eLpNorm'_measure_zero_of_pos {f : α → F } (hq_pos : 0 < q) :
238
+ theorem eLpNorm'_measure_zero_of_pos {f : α → ε } (hq_pos : 0 < q) :
237
239
eLpNorm' f q (0 : Measure α) = 0 := by simp [eLpNorm', hq_pos]
238
240
239
- theorem eLpNorm'_measure_zero_of_exponent_zero {f : α → F } : eLpNorm' f 0 (0 : Measure α) = 1 := by
241
+ theorem eLpNorm'_measure_zero_of_exponent_zero {f : α → ε } : eLpNorm' f 0 (0 : Measure α) = 1 := by
240
242
simp [eLpNorm']
241
243
242
- theorem eLpNorm'_measure_zero_of_neg {f : α → F } (hq_neg : q < 0 ) :
244
+ theorem eLpNorm'_measure_zero_of_neg {f : α → ε } (hq_neg : q < 0 ) :
243
245
eLpNorm' f q (0 : Measure α) = ∞ := by simp [eLpNorm', hq_neg]
244
246
245
247
@[simp]
246
- theorem eLpNormEssSup_measure_zero {f : α → F } : eLpNormEssSup f (0 : Measure α) = 0 := by
248
+ theorem eLpNormEssSup_measure_zero {f : α → ε } : eLpNormEssSup f (0 : Measure α) = 0 := by
247
249
simp [eLpNormEssSup]
248
250
249
251
@[simp]
250
- theorem eLpNorm_measure_zero {f : α → F } : eLpNorm f p (0 : Measure α) = 0 := by
252
+ theorem eLpNorm_measure_zero {f : α → ε } : eLpNorm f p (0 : Measure α) = 0 := by
251
253
by_cases h0 : p = 0
252
254
· simp [h0]
253
255
by_cases h_top : p = ∞
254
256
· simp [h_top]
255
257
rw [← Ne] at h0
256
258
simp [eLpNorm_eq_eLpNorm' h0 h_top, eLpNorm', ENNReal.toReal_pos h0 h_top]
257
259
258
- @[simp] lemma memℒp_measure_zero {f : α → F} : Memℒp f p (0 : Measure α) := by simp [Memℒp]
260
+ @[simp] lemma memℒp_measure_zero [TopologicalSpace ε] {f : α → ε} : Memℒp f p (0 : Measure α) := by
261
+ simp [Memℒp]
259
262
260
263
end Zero
261
264
@@ -286,7 +289,7 @@ end Neg
286
289
287
290
section Const
288
291
289
- theorem eLpNorm'_const (c : F ) (hq_pos : 0 < q) :
292
+ theorem eLpNorm'_const (c : ε ) (hq_pos : 0 < q) :
290
293
eLpNorm' (fun _ : α => c) q μ = ‖c‖ₑ * μ Set.univ ^ (1 / q) := by
291
294
rw [eLpNorm'_eq_lintegral_enorm, lintegral_const,
292
295
ENNReal.mul_rpow_of_nonneg _ _ (by simp [hq_pos.le] : 0 ≤ 1 / q)]
@@ -306,19 +309,19 @@ theorem eLpNorm'_const' [IsFiniteMeasure μ] (c : F) (hc_ne_zero : c ≠ 0) (hq_
306
309
· rw [Ne, ENNReal.rpow_eq_top_iff, not_or, not_and_or, not_and_or]
307
310
simp [hc_ne_zero]
308
311
309
- theorem eLpNormEssSup_const (c : F ) (hμ : μ ≠ 0 ) : eLpNormEssSup (fun _ : α => c) μ = ‖c‖ₑ := by
312
+ theorem eLpNormEssSup_const (c : ε ) (hμ : μ ≠ 0 ) : eLpNormEssSup (fun _ : α => c) μ = ‖c‖ₑ := by
310
313
rw [eLpNormEssSup_eq_essSup_enorm, essSup_const _ hμ]
311
314
312
- theorem eLpNorm'_const_of_isProbabilityMeasure (c : F ) (hq_pos : 0 < q) [IsProbabilityMeasure μ] :
315
+ theorem eLpNorm'_const_of_isProbabilityMeasure (c : ε ) (hq_pos : 0 < q) [IsProbabilityMeasure μ] :
313
316
eLpNorm' (fun _ : α => c) q μ = ‖c‖ₑ := by simp [eLpNorm'_const c hq_pos, measure_univ]
314
317
315
- theorem eLpNorm_const (c : F ) (h0 : p ≠ 0 ) (hμ : μ ≠ 0 ) :
318
+ theorem eLpNorm_const (c : ε ) (h0 : p ≠ 0 ) (hμ : μ ≠ 0 ) :
316
319
eLpNorm (fun _ : α => c) p μ = ‖c‖ₑ * μ Set.univ ^ (1 / ENNReal.toReal p) := by
317
320
by_cases h_top : p = ∞
318
321
· simp [h_top, eLpNormEssSup_const c hμ]
319
322
simp [eLpNorm_eq_eLpNorm' h0 h_top, eLpNorm'_const, ENNReal.toReal_pos h0 h_top]
320
323
321
- theorem eLpNorm_const' (c : F ) (h0 : p ≠ 0 ) (h_top : p ≠ ∞) :
324
+ theorem eLpNorm_const' (c : ε ) (h0 : p ≠ 0 ) (h_top : p ≠ ∞) :
322
325
eLpNorm (fun _ : α => c) p μ = ‖c‖ₑ * μ Set.univ ^ (1 / ENNReal.toReal p) := by
323
326
simp [eLpNorm_eq_eLpNorm' h0 h_top, eLpNorm'_const, ENNReal.toReal_pos h0 h_top]
324
327
@@ -552,32 +555,33 @@ theorem memℒp_of_bounded [IsFiniteMeasure μ]
552
555
(memℒp_const (max |a| |b|)).mono' hX (by filter_upwards [ha, hb] with x using abs_le_max_abs_abs)
553
556
554
557
@[gcongr, mono]
555
- theorem eLpNorm'_mono_measure (f : α → F ) (hμν : ν ≤ μ) (hq : 0 ≤ q) :
558
+ theorem eLpNorm'_mono_measure (f : α → ε ) (hμν : ν ≤ μ) (hq : 0 ≤ q) :
556
559
eLpNorm' f q ν ≤ eLpNorm' f q μ := by
557
560
simp_rw [eLpNorm']
558
561
gcongr
559
562
exact lintegral_mono' hμν le_rfl
560
563
561
564
@[gcongr, mono]
562
- theorem eLpNormEssSup_mono_measure (f : α → F ) (hμν : ν ≪ μ) :
565
+ theorem eLpNormEssSup_mono_measure (f : α → ε ) (hμν : ν ≪ μ) :
563
566
eLpNormEssSup f ν ≤ eLpNormEssSup f μ := by
564
567
simp_rw [eLpNormEssSup]
565
568
exact essSup_mono_measure hμν
566
569
567
570
@[gcongr, mono]
568
- theorem eLpNorm_mono_measure (f : α → F ) (hμν : ν ≤ μ) : eLpNorm f p ν ≤ eLpNorm f p μ := by
571
+ theorem eLpNorm_mono_measure (f : α → ε ) (hμν : ν ≤ μ) : eLpNorm f p ν ≤ eLpNorm f p μ := by
569
572
by_cases hp0 : p = 0
570
573
· simp [hp0]
571
574
by_cases hp_top : p = ∞
572
575
· simp [hp_top, eLpNormEssSup_mono_measure f (Measure.absolutelyContinuous_of_le hμν)]
573
576
simp_rw [eLpNorm_eq_eLpNorm' hp0 hp_top]
574
577
exact eLpNorm'_mono_measure f hμν ENNReal.toReal_nonneg
575
578
576
- theorem Memℒp.mono_measure {f : α → E} (hμν : ν ≤ μ) (hf : Memℒp f p μ) : Memℒp f p ν :=
579
+ theorem Memℒp.mono_measure [TopologicalSpace ε] {f : α → ε} (hμν : ν ≤ μ) (hf : Memℒp f p μ) :
580
+ Memℒp f p ν :=
577
581
⟨hf.1 .mono_measure hμν, (eLpNorm_mono_measure f hμν).trans_lt hf.2 ⟩
578
582
579
583
section Indicator
580
- variable {c : F } {hf : AEStronglyMeasurable f μ} {s : Set α}
584
+ variable {c : ε } {hf : AEStronglyMeasurable f μ} {s : Set α}
581
585
582
586
lemma eLpNorm_indicator_eq_eLpNorm_restrict (hs : MeasurableSet s) :
583
587
eLpNorm (s.indicator f) p μ = eLpNorm f p (μ.restrict s) := by
@@ -635,6 +639,9 @@ lemma eLpNormEssSup_indicator_const_eq (s : Set α) (c : G) (hμs : μ s ≠ 0)
635
639
refine hμs (measure_mono_null (fun x hx_mem => ?_) h')
636
640
rw [Set.mem_setOf_eq, Set.indicator_of_mem hx_mem, enorm_eq_nnnorm]
637
641
642
+ -- The following lemmas require [Zero F].
643
+ variable {c : F}
644
+
638
645
lemma eLpNorm_indicator_const₀ (hs : NullMeasurableSet s μ) (hp : p ≠ 0 ) (hp_top : p ≠ ∞) :
639
646
eLpNorm (s.indicator fun _ => c) p μ = ‖c‖ₑ * μ s ^ (1 / p.toReal) :=
640
647
have hp_pos : 0 < p.toReal := ENNReal.toReal_pos hp hp_top
@@ -692,14 +699,14 @@ lemma memℒp_indicator_const (p : ℝ≥0∞) (hs : MeasurableSet s) (c : E) (h
692
699
· have := Fact.mk hμ.lt_top
693
700
apply memℒp_const
694
701
695
- lemma eLpNormEssSup_piecewise (f g : α → E ) [DecidablePred (· ∈ s)] (hs : MeasurableSet s) :
702
+ lemma eLpNormEssSup_piecewise (f g : α → ε ) [DecidablePred (· ∈ s)] (hs : MeasurableSet s) :
696
703
eLpNormEssSup (Set.piecewise s f g) μ
697
704
= max (eLpNormEssSup f (μ.restrict s)) (eLpNormEssSup g (μ.restrict sᶜ)) := by
698
705
simp only [eLpNormEssSup, ← ENNReal.essSup_piecewise hs]
699
706
congr with x
700
707
by_cases hx : x ∈ s <;> simp [hx]
701
708
702
- lemma eLpNorm_top_piecewise (f g : α → E ) [DecidablePred (· ∈ s)] (hs : MeasurableSet s) :
709
+ lemma eLpNorm_top_piecewise (f g : α → ε ) [DecidablePred (· ∈ s)] (hs : MeasurableSet s) :
703
710
eLpNorm (Set.piecewise s f g) ∞ μ
704
711
= max (eLpNorm f ∞ (μ.restrict s)) (eLpNorm g ∞ (μ.restrict sᶜ)) :=
705
712
eLpNormEssSup_piecewise f g hs
@@ -745,10 +752,11 @@ theorem eLpNorm_restrict_eq_of_support_subset {s : Set α} {f : α → F} (hsf :
745
752
have : ¬(p.toReal ≤ 0 ) := by simpa only [not_le] using ENNReal.toReal_pos hp0 hp_top
746
753
simpa [this] using hsf
747
754
748
- theorem Memℒp.restrict (s : Set α) {f : α → E} (hf : Memℒp f p μ) : Memℒp f p (μ.restrict s) :=
755
+ theorem Memℒp.restrict [TopologicalSpace ε] (s : Set α) {f : α → ε} (hf : Memℒp f p μ) :
756
+ Memℒp f p (μ.restrict s) :=
749
757
hf.mono_measure Measure.restrict_le_self
750
758
751
- theorem eLpNorm'_smul_measure {p : ℝ} (hp : 0 ≤ p) {f : α → F } (c : ℝ≥0 ∞) :
759
+ theorem eLpNorm'_smul_measure {p : ℝ} (hp : 0 ≤ p) {f : α → ε } (c : ℝ≥0 ∞) :
752
760
eLpNorm' f p (c • μ) = c ^ (1 / p) * eLpNorm' f p μ := by
753
761
rw [eLpNorm', lintegral_smul_measure, ENNReal.mul_rpow_of_nonneg, eLpNorm']
754
762
simp [hp]
@@ -766,7 +774,7 @@ end SMul
766
774
767
775
/-- Use `eLpNorm_smul_measure_of_ne_top` instead. -/
768
776
private theorem eLpNorm_smul_measure_of_ne_zero_of_ne_top {p : ℝ≥0 ∞} (hp_ne_zero : p ≠ 0 )
769
- (hp_ne_top : p ≠ ∞) {f : α → F } (c : ℝ≥0 ∞) :
777
+ (hp_ne_top : p ≠ ∞) {f : α → ε } (c : ℝ≥0 ∞) :
770
778
eLpNorm f p (c • μ) = c ^ (1 / p).toReal • eLpNorm f p μ := by
771
779
simp_rw [eLpNorm_eq_eLpNorm' hp_ne_zero hp_ne_top]
772
780
rw [eLpNorm'_smul_measure ENNReal.toReal_nonneg]
@@ -872,7 +880,7 @@ theorem eLpNorm'_eq_zero_iff (hq0_lt : 0 < q) {f : α → E} (hf : AEStronglyMea
872
880
eLpNorm' f q μ = 0 ↔ f =ᵐ[μ] 0 :=
873
881
⟨ae_eq_zero_of_eLpNorm'_eq_zero (le_of_lt hq0_lt) hf, eLpNorm'_eq_zero_of_ae_zero hq0_lt⟩
874
882
875
- theorem coe_nnnorm_ae_le_eLpNormEssSup {_ : MeasurableSpace α} (f : α → F ) (μ : Measure α) :
883
+ theorem coe_nnnorm_ae_le_eLpNormEssSup {_ : MeasurableSpace α} (f : α → ε ) (μ : Measure α) :
876
884
∀ᵐ x ∂μ, ‖f x‖ₑ ≤ eLpNormEssSup f μ :=
877
885
ENNReal.ae_le_essSup fun x => ‖f x‖ₑ
878
886
@@ -891,7 +899,7 @@ theorem eLpNorm_eq_zero_of_ae_zero {f : α → E} (hf : f =ᵐ[μ] 0) : eLpNorm
891
899
rw [← eLpNorm_zero (p := p) (μ := μ) (α := α) (F := E)]
892
900
exact eLpNorm_congr_ae hf
893
901
894
- theorem ae_le_eLpNormEssSup {f : α → F } : ∀ᵐ y ∂μ, ‖f y‖ₑ ≤ eLpNormEssSup f μ :=
902
+ theorem ae_le_eLpNormEssSup {f : α → ε } : ∀ᵐ y ∂μ, ‖f y‖ₑ ≤ eLpNormEssSup f μ :=
895
903
ae_le_essSup
896
904
897
905
lemma eLpNormEssSup_lt_top_iff_isBoundedUnder :
@@ -900,7 +908,7 @@ lemma eLpNormEssSup_lt_top_iff_isBoundedUnder :
900
908
simp_rw [← ENNReal.coe_le_coe, ENNReal.coe_toNNReal h.ne]; exact ae_le_eLpNormEssSup⟩
901
909
mpr := by rintro ⟨C, hC⟩; exact eLpNormEssSup_lt_top_of_ae_nnnorm_bound (C := C) hC
902
910
903
- theorem meas_eLpNormEssSup_lt {f : α → F } : μ { y | eLpNormEssSup f μ < ‖f y‖ₑ } = 0 :=
911
+ theorem meas_eLpNormEssSup_lt {f : α → ε } : μ { y | eLpNormEssSup f μ < ‖f y‖ₑ } = 0 :=
904
912
meas_essSup_lt
905
913
906
914
lemma eLpNorm_lt_top_of_finite [Finite α] [IsFiniteMeasure μ] : eLpNorm f p μ < ∞ := by
@@ -1097,7 +1105,6 @@ end BoundedSMul
1097
1105
The inequalities in the previous section are now tight.
1098
1106
-/
1099
1107
1100
-
1101
1108
section NormedSpace
1102
1109
1103
1110
variable {𝕜 : Type *} [NormedDivisionRing 𝕜] [MulActionWithZero 𝕜 E] [Module 𝕜 F]
0 commit comments