@@ -115,16 +115,31 @@ variable {R v}
115
115
theorem LinearIndepOn.linearIndependent {s : Set ι} (h : LinearIndepOn R v s) :
116
116
LinearIndependent R (fun x : s ↦ v x) := h
117
117
118
- theorem linearIndependent_iff_injective_linearCombination :
118
+ theorem linearIndependent_iff_injective_finsuppLinearCombination :
119
119
LinearIndependent R v ↔ Injective (Finsupp.linearCombination R v) := Iff.rfl
120
120
121
- alias ⟨LinearIndependent.injective_linearCombination, _⟩ :=
122
- linearIndependent_iff_injective_linearCombination
121
+ @[deprecated (since := "2025-03-18")]
122
+ alias linearIndependent_iff_injective_linearCombination :=
123
+ linearIndependent_iff_injective_finsuppLinearCombination
123
124
124
- theorem Fintype.linearIndependent_iff_injective [Fintype ι] :
125
+ alias ⟨LinearIndependent.finsuppLinearCombination_injective, _⟩ :=
126
+ linearIndependent_iff_injective_finsuppLinearCombination
127
+
128
+ @[deprecated (since := "2025-03-18")]
129
+ alias LinearIndependent.linearCombination_injective :=
130
+ LinearIndependent.finsuppLinearCombination_injective
131
+
132
+ theorem linearIndependent_iff_injective_fintypeLinearCombination [Fintype ι] :
125
133
LinearIndependent R v ↔ Injective (Fintype.linearCombination R v) := by
126
134
simp [← Finsupp.linearCombination_eq_fintype_linearCombination, LinearIndependent]
127
135
136
+ @[deprecated (since := "2025-03-18")]
137
+ alias Fintype.linearIndependent_iff_injective :=
138
+ linearIndependent_iff_injective_fintypeLinearCombination
139
+
140
+ alias ⟨LinearIndependent.fintypeLinearCombination_injective, _⟩ :=
141
+ linearIndependent_iff_injective_fintypeLinearCombination
142
+
128
143
theorem LinearIndependent.injective [Nontrivial R] (hv : LinearIndependent R v) : Injective v := by
129
144
simpa [comp_def]
130
145
using Injective.comp hv (Finsupp.single_left_injective one_ne_zero)
@@ -245,7 +260,7 @@ theorem not_linearIndependent_iffₛ :
245
260
246
261
theorem Fintype.linearIndependent_iffₛ [Fintype ι] :
247
262
LinearIndependent R v ↔ ∀ f g : ι → R, ∑ i, f i • v i = ∑ i, g i • v i → ∀ i, f i = g i := by
248
- simp_rw [Fintype.linearIndependent_iff_injective ,
263
+ simp_rw [linearIndependent_iff_injective_fintypeLinearCombination ,
249
264
Injective, Fintype.linearCombination_apply, funext_iff]
250
265
251
266
theorem Fintype.not_linearIndependent_iffₛ [Fintype ι] :
@@ -581,7 +596,7 @@ theorem linearIndependent_iff'' :
581
596
582
597
theorem linearIndependent_add_smul_iff {c : ι → R} {i : ι} (h₀ : c i = 0 ) :
583
598
LinearIndependent R (v + (c · • v i)) ↔ LinearIndependent R v := by
584
- simp [linearIndependent_iff_injective_linearCombination ,
599
+ simp [linearIndependent_iff_injective_finsuppLinearCombination ,
585
600
← Finsupp.linearCombination_comp_addSingleEquiv i c h₀]
586
601
587
602
theorem not_linearIndependent_iff :
0 commit comments