File tree Expand file tree Collapse file tree 1 file changed +11
-4
lines changed Expand file tree Collapse file tree 1 file changed +11
-4
lines changed Original file line number Diff line number Diff line change @@ -219,11 +219,18 @@ namespace LE.le
219
219
protected theorem ge [LE α] {x y : α} (h : x ≤ y) : y ≥ x :=
220
220
h
221
221
222
- theorem lt_iff_ne [PartialOrder α] {x y : α} (h : x ≤ y) : x < y ↔ x ≠ y :=
223
- ⟨fun h ↦ h.ne, h.lt_of_ne⟩
222
+ section partial_order
223
+ variable [PartialOrder α] {a b : α}
224
+
225
+ lemma lt_iff_ne (h : a ≤ b) : a < b ↔ a ≠ b := ⟨fun h ↦ h.ne, h.lt_of_ne⟩
226
+ lemma gt_iff_ne (h : a ≤ b) : a < b ↔ b ≠ a := ⟨fun h ↦ h.ne.symm, h.lt_of_ne'⟩
227
+ lemma not_lt_iff_eq (h : a ≤ b) : ¬ a < b ↔ a = b := h.lt_iff_ne.not_left
228
+ lemma not_gt_iff_eq (h : a ≤ b) : ¬ a < b ↔ b = a := h.gt_iff_ne.not_left
229
+
230
+ lemma le_iff_eq (h : a ≤ b) : b ≤ a ↔ b = a := ⟨fun h' ↦ h'.antisymm h, Eq.le⟩
231
+ lemma ge_iff_eq (h : a ≤ b) : b ≤ a ↔ a = b := ⟨h.antisymm, Eq.ge⟩
224
232
225
- theorem le_iff_eq [PartialOrder α] {x y : α} (h : x ≤ y) : y ≤ x ↔ y = x :=
226
- ⟨fun h' ↦ h'.antisymm h, Eq.le⟩
233
+ end partial_order
227
234
228
235
theorem lt_or_le [LinearOrder α] {a b : α} (h : a ≤ b) (c : α) : a < c ∨ c ≤ b :=
229
236
((lt_or_ge a c).imp id) fun hc ↦ le_trans hc h
You can’t perform that action at this time.
0 commit comments