@@ -56,7 +56,7 @@ open Function Set
56
56
57
57
universe u
58
58
59
- variable {α β γ : Type *} {ι ι' ι₂ : Sort *} {κ κ₁ κ₂ : ι → Sort *} {κ' : ι' → Sort *}
59
+ variable {α β γ δ : Type *} {ι ι' ι₂ : Sort *} {κ κ₁ κ₂ : ι → Sort *} {κ' : ι' → Sort *}
60
60
61
61
namespace Set
62
62
@@ -841,28 +841,28 @@ theorem iInter₂_union (s : ∀ i, κ i → Set α) (t : Set α) :
841
841
(⋂ (i) (j), s i j) ∪ t = ⋂ (i) (j), s i j ∪ t := by simp_rw [iInter_union]
842
842
843
843
theorem mem_sUnion_of_mem {x : α} {t : Set α} {S : Set (Set α)} (hx : x ∈ t) (ht : t ∈ S) :
844
- x ∈ ⋃₀S :=
844
+ x ∈ ⋃₀ S :=
845
845
⟨t, ht, hx⟩
846
846
847
847
-- is this theorem really necessary?
848
- theorem not_mem_of_not_mem_sUnion {x : α} {t : Set α} {S : Set (Set α)} (hx : x ∉ ⋃₀S)
848
+ theorem not_mem_of_not_mem_sUnion {x : α} {t : Set α} {S : Set (Set α)} (hx : x ∉ ⋃₀ S)
849
849
(ht : t ∈ S) : x ∉ t := fun h => hx ⟨t, ht, h⟩
850
850
851
851
theorem sInter_subset_of_mem {S : Set (Set α)} {t : Set α} (tS : t ∈ S) : ⋂₀ S ⊆ t :=
852
852
sInf_le tS
853
853
854
- theorem subset_sUnion_of_mem {S : Set (Set α)} {t : Set α} (tS : t ∈ S) : t ⊆ ⋃₀S :=
854
+ theorem subset_sUnion_of_mem {S : Set (Set α)} {t : Set α} (tS : t ∈ S) : t ⊆ ⋃₀ S :=
855
855
le_sSup tS
856
856
857
857
theorem subset_sUnion_of_subset {s : Set α} (t : Set (Set α)) (u : Set α) (h₁ : s ⊆ u)
858
- (h₂ : u ∈ t) : s ⊆ ⋃₀t :=
858
+ (h₂ : u ∈ t) : s ⊆ ⋃₀ t :=
859
859
Subset.trans h₁ (subset_sUnion_of_mem h₂)
860
860
861
- theorem sUnion_subset {S : Set (Set α)} {t : Set α} (h : ∀ t' ∈ S, t' ⊆ t) : ⋃₀S ⊆ t :=
861
+ theorem sUnion_subset {S : Set (Set α)} {t : Set α} (h : ∀ t' ∈ S, t' ⊆ t) : ⋃₀ S ⊆ t :=
862
862
sSup_le h
863
863
864
864
@[simp]
865
- theorem sUnion_subset_iff {s : Set (Set α)} {t : Set α} : ⋃₀s ⊆ t ↔ ∀ t' ∈ s, t' ⊆ t :=
865
+ theorem sUnion_subset_iff {s : Set (Set α)} {t : Set α} : ⋃₀ s ⊆ t ↔ ∀ t' ∈ s, t' ⊆ t :=
866
866
sSup_le_iff
867
867
868
868
/-- `sUnion` is monotone under taking a subset of each set. -/
@@ -884,31 +884,31 @@ theorem subset_sInter_iff {S : Set (Set α)} {t : Set α} : t ⊆ ⋂₀ S ↔
884
884
le_sInf_iff
885
885
886
886
@[gcongr]
887
- theorem sUnion_subset_sUnion {S T : Set (Set α)} (h : S ⊆ T) : ⋃₀S ⊆ ⋃₀T :=
887
+ theorem sUnion_subset_sUnion {S T : Set (Set α)} (h : S ⊆ T) : ⋃₀ S ⊆ ⋃₀ T :=
888
888
sUnion_subset fun _ hs => subset_sUnion_of_mem (h hs)
889
889
890
890
@[gcongr]
891
891
theorem sInter_subset_sInter {S T : Set (Set α)} (h : S ⊆ T) : ⋂₀ T ⊆ ⋂₀ S :=
892
892
subset_sInter fun _ hs => sInter_subset_of_mem (h hs)
893
893
894
894
@[simp]
895
- theorem sUnion_empty : ⋃₀∅ = (∅ : Set α) :=
895
+ theorem sUnion_empty : ⋃₀ ∅ = (∅ : Set α) :=
896
896
sSup_empty
897
897
898
898
@[simp]
899
899
theorem sInter_empty : ⋂₀ ∅ = (univ : Set α) :=
900
900
sInf_empty
901
901
902
902
@[simp]
903
- theorem sUnion_singleton (s : Set α) : ⋃₀{s} = s :=
903
+ theorem sUnion_singleton (s : Set α) : ⋃₀ {s} = s :=
904
904
sSup_singleton
905
905
906
906
@[simp]
907
907
theorem sInter_singleton (s : Set α) : ⋂₀ {s} = s :=
908
908
sInf_singleton
909
909
910
910
@[simp]
911
- theorem sUnion_eq_empty {S : Set (Set α)} : ⋃₀S = ∅ ↔ ∀ s ∈ S, s = ∅ :=
911
+ theorem sUnion_eq_empty {S : Set (Set α)} : ⋃₀ S = ∅ ↔ ∀ s ∈ S, s = ∅ :=
912
912
sSup_eq_bot
913
913
914
914
@[simp]
@@ -939,54 +939,62 @@ theorem sUnion_mem_empty_univ {S : Set (Set α)} (h : S ⊆ {∅, univ}) :
939
939
exact univ_subset_iff.1 <| subset_sUnion_of_mem hs
940
940
941
941
@[simp]
942
- theorem nonempty_sUnion {S : Set (Set α)} : (⋃₀S).Nonempty ↔ ∃ s ∈ S, Set.Nonempty s := by
942
+ theorem nonempty_sUnion {S : Set (Set α)} : (⋃₀ S).Nonempty ↔ ∃ s ∈ S, Set.Nonempty s := by
943
943
simp [nonempty_iff_ne_empty]
944
944
945
- theorem Nonempty.of_sUnion {s : Set (Set α)} (h : (⋃₀s).Nonempty) : s.Nonempty :=
945
+ theorem Nonempty.of_sUnion {s : Set (Set α)} (h : (⋃₀ s).Nonempty) : s.Nonempty :=
946
946
let ⟨s, hs, _⟩ := nonempty_sUnion.1 h
947
947
⟨s, hs⟩
948
948
949
- theorem Nonempty.of_sUnion_eq_univ [Nonempty α] {s : Set (Set α)} (h : ⋃₀s = univ) : s.Nonempty :=
949
+ theorem Nonempty.of_sUnion_eq_univ [Nonempty α] {s : Set (Set α)} (h : ⋃₀ s = univ) : s.Nonempty :=
950
950
Nonempty.of_sUnion <| h.symm ▸ univ_nonempty
951
951
952
- theorem sUnion_union (S T : Set (Set α)) : ⋃₀(S ∪ T) = ⋃₀S ∪ ⋃₀T :=
952
+ theorem sUnion_union (S T : Set (Set α)) : ⋃₀ (S ∪ T) = ⋃₀ S ∪ ⋃₀ T :=
953
953
sSup_union
954
954
955
955
theorem sInter_union (S T : Set (Set α)) : ⋂₀ (S ∪ T) = ⋂₀ S ∩ ⋂₀ T :=
956
956
sInf_union
957
957
958
958
@[simp]
959
- theorem sUnion_insert (s : Set α) (T : Set (Set α)) : ⋃₀insert s T = s ∪ ⋃₀T :=
959
+ theorem sUnion_insert (s : Set α) (T : Set (Set α)) : ⋃₀ insert s T = s ∪ ⋃₀ T :=
960
960
sSup_insert
961
961
962
962
@[simp]
963
963
theorem sInter_insert (s : Set α) (T : Set (Set α)) : ⋂₀ insert s T = s ∩ ⋂₀ T :=
964
964
sInf_insert
965
965
966
966
@[simp]
967
- theorem sUnion_diff_singleton_empty (s : Set (Set α)) : ⋃₀(s \ {∅}) = ⋃₀s :=
967
+ theorem sUnion_diff_singleton_empty (s : Set (Set α)) : ⋃₀ (s \ {∅}) = ⋃₀ s :=
968
968
sSup_diff_singleton_bot s
969
969
970
970
@[simp]
971
971
theorem sInter_diff_singleton_univ (s : Set (Set α)) : ⋂₀ (s \ {univ}) = ⋂₀ s :=
972
972
sInf_diff_singleton_top s
973
973
974
- theorem sUnion_pair (s t : Set α) : ⋃₀{s, t} = s ∪ t :=
974
+ theorem sUnion_pair (s t : Set α) : ⋃₀ {s, t} = s ∪ t :=
975
975
sSup_pair
976
976
977
977
theorem sInter_pair (s t : Set α) : ⋂₀ {s, t} = s ∩ t :=
978
978
sInf_pair
979
979
980
980
@[simp]
981
- theorem sUnion_image (f : α → Set β) (s : Set α) : ⋃₀(f '' s) = ⋃ x ∈ s, f x :=
981
+ theorem sUnion_image (f : α → Set β) (s : Set α) : ⋃₀ (f '' s) = ⋃ a ∈ s, f a :=
982
982
sSup_image
983
983
984
984
@[simp]
985
- theorem sInter_image (f : α → Set β) (s : Set α) : ⋂₀ (f '' s) = ⋂ x ∈ s, f x :=
985
+ theorem sInter_image (f : α → Set β) (s : Set α) : ⋂₀ (f '' s) = ⋂ a ∈ s, f a :=
986
986
sInf_image
987
987
988
988
@[simp]
989
- theorem sUnion_range (f : ι → Set β) : ⋃₀range f = ⋃ x, f x :=
989
+ lemma sUnion_image2 (f : α → β → Set γ) (s : Set α) (t : Set β) :
990
+ ⋃₀ (image2 f s t) = ⋃ (a ∈ s) (b ∈ t), f a b := sSup_image2
991
+
992
+ @[simp]
993
+ lemma sInter_image2 (f : α → β → Set γ) (s : Set α) (t : Set β) :
994
+ ⋂₀ (image2 f s t) = ⋂ (a ∈ s) (b ∈ t), f a b := sInf_image2
995
+
996
+ @[simp]
997
+ theorem sUnion_range (f : ι → Set β) : ⋃₀ range f = ⋃ x, f x :=
990
998
rfl
991
999
992
1000
@[simp]
@@ -1001,7 +1009,7 @@ theorem iUnion₂_eq_univ_iff {s : ∀ i, κ i → Set α} :
1001
1009
⋃ (i) (j), s i j = univ ↔ ∀ a, ∃ i j, a ∈ s i j := by
1002
1010
simp only [iUnion_eq_univ_iff, mem_iUnion]
1003
1011
1004
- theorem sUnion_eq_univ_iff {c : Set (Set α)} : ⋃₀c = univ ↔ ∀ a, ∃ b ∈ c, a ∈ b := by
1012
+ theorem sUnion_eq_univ_iff {c : Set (Set α)} : ⋃₀ c = univ ↔ ∀ a, ∃ b ∈ c, a ∈ b := by
1005
1013
simp only [eq_univ_iff_forall, mem_sUnion]
1006
1014
1007
1015
-- classical
@@ -1035,23 +1043,23 @@ theorem nonempty_sInter {c : Set (Set α)} : (⋂₀ c).Nonempty ↔ ∃ a, ∀
1035
1043
simp [nonempty_iff_ne_empty, sInter_eq_empty_iff]
1036
1044
1037
1045
-- classical
1038
- theorem compl_sUnion (S : Set (Set α)) : (⋃₀S)ᶜ = ⋂₀ (compl '' S) :=
1046
+ theorem compl_sUnion (S : Set (Set α)) : (⋃₀ S)ᶜ = ⋂₀ (compl '' S) :=
1039
1047
ext fun x => by simp
1040
1048
1041
1049
-- classical
1042
- theorem sUnion_eq_compl_sInter_compl (S : Set (Set α)) : ⋃₀S = (⋂₀ (compl '' S))ᶜ := by
1043
- rw [← compl_compl (⋃₀S), compl_sUnion]
1050
+ theorem sUnion_eq_compl_sInter_compl (S : Set (Set α)) : ⋃₀ S = (⋂₀ (compl '' S))ᶜ := by
1051
+ rw [← compl_compl (⋃₀ S), compl_sUnion]
1044
1052
1045
1053
-- classical
1046
- theorem compl_sInter (S : Set (Set α)) : (⋂₀ S)ᶜ = ⋃₀(compl '' S) := by
1054
+ theorem compl_sInter (S : Set (Set α)) : (⋂₀ S)ᶜ = ⋃₀ (compl '' S) := by
1047
1055
rw [sUnion_eq_compl_sInter_compl, compl_compl_image]
1048
1056
1049
1057
-- classical
1050
- theorem sInter_eq_compl_sUnion_compl (S : Set (Set α)) : ⋂₀ S = (⋃₀(compl '' S))ᶜ := by
1058
+ theorem sInter_eq_compl_sUnion_compl (S : Set (Set α)) : ⋂₀ S = (⋃₀ (compl '' S))ᶜ := by
1051
1059
rw [← compl_compl (⋂₀ S), compl_sInter]
1052
1060
1053
1061
theorem inter_empty_of_inter_sUnion_empty {s t : Set α} {S : Set (Set α)} (hs : t ∈ S)
1054
- (h : s ∩ ⋃₀S = ∅) : s ∩ t = ∅ :=
1062
+ (h : s ∩ ⋃₀ S = ∅) : s ∩ t = ∅ :=
1055
1063
eq_empty_of_subset_empty <| by
1056
1064
rw [← h]; exact inter_subset_inter_right _ (subset_sUnion_of_mem hs)
1057
1065
@@ -1096,13 +1104,13 @@ theorem iUnion_of_singleton (α : Type*) : (⋃ x, {x} : Set α) = univ := by si
1096
1104
1097
1105
theorem iUnion_of_singleton_coe (s : Set α) : ⋃ i : s, ({(i : α)} : Set α) = s := by simp
1098
1106
1099
- theorem sUnion_eq_biUnion {s : Set (Set α)} : ⋃₀s = ⋃ (i : Set α) (_ : i ∈ s), i := by
1107
+ theorem sUnion_eq_biUnion {s : Set (Set α)} : ⋃₀ s = ⋃ (i : Set α) (_ : i ∈ s), i := by
1100
1108
rw [← sUnion_image, image_id']
1101
1109
1102
1110
theorem sInter_eq_biInter {s : Set (Set α)} : ⋂₀ s = ⋂ (i : Set α) (_ : i ∈ s), i := by
1103
1111
rw [← sInter_image, image_id']
1104
1112
1105
- theorem sUnion_eq_iUnion {s : Set (Set α)} : ⋃₀s = ⋃ i : s, i := by
1113
+ theorem sUnion_eq_iUnion {s : Set (Set α)} : ⋃₀ s = ⋃ i : s, i := by
1106
1114
simp only [← sUnion_range, Subtype.range_coe]
1107
1115
1108
1116
theorem sInter_eq_iInter {s : Set (Set α)} : ⋂₀ s = ⋂ i : s, i := by
@@ -1127,7 +1135,7 @@ theorem sInter_union_sInter {S T : Set (Set α)} :
1127
1135
sInf_sup_sInf
1128
1136
1129
1137
theorem sUnion_inter_sUnion {s t : Set (Set α)} :
1130
- ⋃₀s ∩ ⋃₀t = ⋃ p ∈ s ×ˢ t, (p : Set α × Set α).1 ∩ p.2 :=
1138
+ ⋃₀ s ∩ ⋃₀ t = ⋃ p ∈ s ×ˢ t, (p : Set α × Set α).1 ∩ p.2 :=
1131
1139
sSup_inf_sSup
1132
1140
1133
1141
theorem biUnion_iUnion (s : ι → Set α) (t : α → Set β) :
@@ -1136,14 +1144,14 @@ theorem biUnion_iUnion (s : ι → Set α) (t : α → Set β) :
1136
1144
theorem biInter_iUnion (s : ι → Set α) (t : α → Set β) :
1137
1145
⋂ x ∈ ⋃ i, s i, t x = ⋂ (i) (x ∈ s i), t x := by simp [@iInter_comm _ ι]
1138
1146
1139
- theorem sUnion_iUnion (s : ι → Set (Set α)) : ⋃₀⋃ i, s i = ⋃ i, ⋃₀s i := by
1147
+ theorem sUnion_iUnion (s : ι → Set (Set α)) : ⋃₀ ⋃ i, s i = ⋃ i, ⋃₀ s i := by
1140
1148
simp only [sUnion_eq_biUnion, biUnion_iUnion]
1141
1149
1142
1150
theorem sInter_iUnion (s : ι → Set (Set α)) : ⋂₀ ⋃ i, s i = ⋂ i, ⋂₀ s i := by
1143
1151
simp only [sInter_eq_biInter, biInter_iUnion]
1144
1152
1145
1153
theorem iUnion_range_eq_sUnion {α β : Type *} (C : Set (Set α)) {f : ∀ s : C, β → (s : Type _)}
1146
- (hf : ∀ s : C, Surjective (f s)) : ⋃ y : β, range (fun s : C => (f s y).val) = ⋃₀C := by
1154
+ (hf : ∀ s : C, Surjective (f s)) : ⋃ y : β, range (fun s : C => (f s y).val) = ⋃₀ C := by
1147
1155
ext x; constructor
1148
1156
· rintro ⟨s, ⟨y, rfl⟩, ⟨s, hs⟩, rfl⟩
1149
1157
refine ⟨_, hs, ?_⟩
@@ -1364,7 +1372,7 @@ theorem inj_on_iUnion_of_directed {s : ι → Set α} (hs : Directed (· ⊆ ·)
1364
1372
1365
1373
1366
1374
theorem surjOn_sUnion {s : Set α} {T : Set (Set β)} {f : α → β} (H : ∀ t ∈ T, SurjOn f s t) :
1367
- SurjOn f s (⋃₀T) := fun _ ⟨t, ht, hx⟩ => H t ht hx
1375
+ SurjOn f s (⋃₀ T) := fun _ ⟨t, ht, hx⟩ => H t ht hx
1368
1376
1369
1377
theorem surjOn_iUnion {s : Set α} {t : ι → Set β} {f : α → β} (H : ∀ i, SurjOn f s (t i)) :
1370
1378
SurjOn f s (⋃ i, t i) :=
@@ -1467,6 +1475,28 @@ theorem biUnion_image : ⋃ x ∈ f '' s, g x = ⋃ y ∈ s, g (f y) :=
1467
1475
theorem biInter_image : ⋂ x ∈ f '' s, g x = ⋂ y ∈ s, g (f y) :=
1468
1476
iInf_image
1469
1477
1478
+ lemma biUnion_image2 (s : Set α) (t : Set β) (f : α → β → γ) (g : γ → Set δ) :
1479
+ ⋃ c ∈ image2 f s t, g c = ⋃ a ∈ s, ⋃ b ∈ t, g (f a b) := iSup_image2 ..
1480
+
1481
+ lemma biInter_image2 (s : Set α) (t : Set β) (f : α → β → γ) (g : γ → Set δ) :
1482
+ ⋂ c ∈ image2 f s t, g c = ⋂ a ∈ s, ⋂ b ∈ t, g (f a b) := iInf_image2 ..
1483
+
1484
+ lemma iUnion_inter_iUnion {ι κ : Sort *} (f : ι → Set α) (g : κ → Set α) :
1485
+ (⋃ i, f i) ∩ ⋃ j, g j = ⋃ i, ⋃ j, f i ∩ g j := by simp_rw [iUnion_inter, inter_iUnion]
1486
+
1487
+ lemma iInter_union_iInter {ι κ : Sort *} (f : ι → Set α) (g : κ → Set α) :
1488
+ (⋂ i, f i) ∪ ⋂ j, g j = ⋂ i, ⋂ j, f i ∪ g j := by simp_rw [iInter_union, union_iInter]
1489
+
1490
+ lemma iUnion₂_inter_iUnion₂ {ι₁ κ₁ : Sort *} {ι₂ : ι₁ → Sort *} {k₂ : κ₁ → Sort *}
1491
+ (f : ∀ i₁, ι₂ i₁ → Set α) (g : ∀ j₁, k₂ j₁ → Set α) :
1492
+ (⋃ i₁, ⋃ i₂, f i₁ i₂) ∩ ⋃ j₁, ⋃ j₂, g j₁ j₂ = ⋃ i₁, ⋃ i₂, ⋃ j₁, ⋃ j₂, f i₁ i₂ ∩ g j₁ j₂ := by
1493
+ simp_rw [iUnion_inter, inter_iUnion]
1494
+
1495
+ lemma iInter₂_union_iInter₂ {ι₁ κ₁ : Sort *} {ι₂ : ι₁ → Sort *} {k₂ : κ₁ → Sort *}
1496
+ (f : ∀ i₁, ι₂ i₁ → Set α) (g : ∀ j₁, k₂ j₁ → Set α) :
1497
+ (⋂ i₁, ⋂ i₂, f i₁ i₂) ∪ ⋂ j₁, ⋂ j₂, g j₁ j₂ = ⋂ i₁, ⋂ i₂, ⋂ j₁, ⋂ j₂, f i₁ i₂ ∪ g j₁ j₂ := by
1498
+ simp_rw [iInter_union, union_iInter]
1499
+
1470
1500
end Image
1471
1501
1472
1502
section Preimage
@@ -1492,7 +1522,7 @@ theorem image_sUnion {f : α → β} {s : Set (Set α)} : (f '' ⋃₀ s) = ⋃
1492
1522
exact ⟨a, ⟨t, ht₁, ht₂⟩, rfl⟩
1493
1523
1494
1524
@[simp]
1495
- theorem preimage_sUnion {f : α → β} {s : Set (Set β)} : f ⁻¹' ⋃₀s = ⋃ t ∈ s, f ⁻¹' t := by
1525
+ theorem preimage_sUnion {f : α → β} {s : Set (Set β)} : f ⁻¹' ⋃₀ s = ⋃ t ∈ s, f ⁻¹' t := by
1496
1526
rw [sUnion_eq_biUnion, preimage_iUnion₂]
1497
1527
1498
1528
theorem preimage_iInter {f : α → β} {s : ι → Set β} : (f ⁻¹' ⋂ i, s i) = ⋂ i, f ⁻¹' s i := by
@@ -1527,7 +1557,7 @@ theorem prod_iUnion {s : Set α} {t : ι → Set β} : (s ×ˢ ⋃ i, t i) = ⋃
1527
1557
theorem prod_iUnion₂ {s : Set α} {t : ∀ i, κ i → Set β} :
1528
1558
(s ×ˢ ⋃ (i) (j), t i j) = ⋃ (i) (j), s ×ˢ t i j := by simp_rw [prod_iUnion]
1529
1559
1530
- theorem prod_sUnion {s : Set α} {C : Set (Set β)} : s ×ˢ ⋃₀C = ⋃₀((fun t => s ×ˢ t) '' C) := by
1560
+ theorem prod_sUnion {s : Set α} {C : Set (Set β)} : s ×ˢ ⋃₀ C = ⋃₀ ((fun t => s ×ˢ t) '' C) := by
1531
1561
simp_rw [sUnion_eq_biUnion, biUnion_image, prod_iUnion₂]
1532
1562
1533
1563
theorem iUnion_prod_const {s : ι → Set α} {t : Set β} : (⋃ i, s i) ×ˢ t = ⋃ i, s i ×ˢ t := by
@@ -1540,7 +1570,7 @@ theorem iUnion₂_prod_const {s : ∀ i, κ i → Set α} {t : Set β} :
1540
1570
(⋃ (i) (j), s i j) ×ˢ t = ⋃ (i) (j), s i j ×ˢ t := by simp_rw [iUnion_prod_const]
1541
1571
1542
1572
theorem sUnion_prod_const {C : Set (Set α)} {t : Set β} :
1543
- ⋃₀C ×ˢ t = ⋃₀((fun s : Set α => s ×ˢ t) '' C) := by
1573
+ ⋃₀ C ×ˢ t = ⋃₀ ((fun s : Set α => s ×ˢ t) '' C) := by
1544
1574
simp only [sUnion_eq_biUnion, iUnion₂_prod_const, biUnion_image]
1545
1575
1546
1576
theorem iUnion_prod {ι ι' α β} (s : ι → Set α) (t : ι' → Set β) :
@@ -1807,12 +1837,12 @@ theorem disjoint_iUnion₂_right {s : Set α} {t : ∀ i, κ i → Set α} :
1807
1837
1808
1838
@[simp]
1809
1839
theorem disjoint_sUnion_left {S : Set (Set α)} {t : Set α} :
1810
- Disjoint (⋃₀S) t ↔ ∀ s ∈ S, Disjoint s t :=
1840
+ Disjoint (⋃₀ S) t ↔ ∀ s ∈ S, Disjoint s t :=
1811
1841
sSup_disjoint_iff
1812
1842
1813
1843
@[simp]
1814
1844
theorem disjoint_sUnion_right {s : Set α} {S : Set (Set α)} :
1815
- Disjoint s (⋃₀S) ↔ ∀ t ∈ S, Disjoint s t :=
1845
+ Disjoint s (⋃₀ S) ↔ ∀ t ∈ S, Disjoint s t :=
1816
1846
disjoint_sSup_iff
1817
1847
1818
1848
lemma biUnion_compl_eq_of_pairwise_disjoint_of_iUnion_eq_univ {ι : Type *} {Es : ι → Set α}
0 commit comments