We read every piece of feedback, and take your input very seriously.
To see all available qualifiers, see our documentation.
There was an error while loading. Please reload this page.
s \ {a ∈ s | p a} = {a ∈ s | ¬ p a}
1 parent 624a353 commit 79c1c03Copy full SHA for 79c1c03
Mathlib/Data/Set/Basic.lean
@@ -1238,6 +1238,9 @@ theorem diff_diff_cancel_left {s t : Set α} (h : s ⊆ t) : t \ (t \ s) = s :=
1238
theorem union_eq_diff_union_diff_union_inter (s t : Set α) : s ∪ t = s \ t ∪ t \ s ∪ s ∩ t :=
1239
sup_eq_sdiff_sup_sdiff_sup_inf
1240
1241
+@[simp] lemma sdiff_sep_self (s : Set α) (p : α → Prop) : s \ {a ∈ s | p a} = {a ∈ s | ¬ p a} :=
1242
+ diff_self_inter
1243
+
1244
/-! ### Powerset -/
1245
1246
theorem mem_powerset {x s : Set α} (h : x ⊆ s) : x ∈ 𝒫 s := @h
0 commit comments