@@ -1059,6 +1059,12 @@ theorem tendsto_mul_const_atTop_of_pos (hr : 0 < r) :
1059
1059
simpa only [mul_comm] using tendsto_const_mul_atTop_of_pos hr
1060
1060
#align filter.tendsto_mul_const_at_top_of_pos Filter.tendsto_mul_const_atTop_of_pos
1061
1061
1062
+ /-- If `r` is a positive constant, then `x ↦ f x * r` tends to infinity along a filter if and only
1063
+ if `f` tends to infinity along the same filter. -/
1064
+ lemma tendsto_div_const_atTop_of_pos (hr : 0 < r) :
1065
+ Tendsto (λ x ↦ f x / r) l atTop ↔ Tendsto f l atTop := by
1066
+ simpa only [div_eq_mul_inv] using tendsto_mul_const_atTop_of_pos (inv_pos.2 hr)
1067
+
1062
1068
/-- If `f` tends to infinity along a nontrivial filter `l`, then `fun x ↦ r * f x` tends to infinity
1063
1069
if and only if `0 < r. `-/
1064
1070
theorem tendsto_const_mul_atTop_iff_pos [NeBot l] (h : Tendsto f l atTop) :
@@ -1075,6 +1081,12 @@ theorem tendsto_mul_const_atTop_iff_pos [NeBot l] (h : Tendsto f l atTop) :
1075
1081
simp only [mul_comm _ r, tendsto_const_mul_atTop_iff_pos h]
1076
1082
#align filter.tendsto_mul_const_at_top_iff_pos Filter.tendsto_mul_const_atTop_iff_pos
1077
1083
1084
+ /-- If `f` tends to infinity along a nontrivial filter `l`, then `x ↦ f x * r` tends to infinity
1085
+ if and only if `0 < r. `-/
1086
+ lemma tendsto_div_const_atTop_iff_pos [NeBot l] (h : Tendsto f l atTop) :
1087
+ Tendsto (λ x ↦ f x / r) l atTop ↔ 0 < r := by
1088
+ simp only [div_eq_mul_inv, tendsto_mul_const_atTop_iff_pos h, inv_pos]
1089
+
1078
1090
/-- If a function tends to infinity along a filter, then this function multiplied by a positive
1079
1091
constant (on the left) also tends to infinity. For a version working in `ℕ` or `ℤ`, use
1080
1092
`filter.tendsto.const_mul_atTop'` instead. -/
0 commit comments