|
| 1 | +/- |
| 2 | +Copyright (c) 2021 Joseph Myers. All rights reserved. |
| 3 | +Released under Apache 2.0 license as described in the file LICENSE. |
| 4 | +Authors: Joseph Myers |
| 5 | +
|
| 6 | +! This file was ported from Lean 3 source module linear_algebra.multilinear.basis |
| 7 | +! leanprover-community/mathlib commit ce11c3c2a285bbe6937e26d9792fda4e51f3fe1a |
| 8 | +! Please do not edit these lines, except to modify the commit id |
| 9 | +! if you have ported upstream changes. |
| 10 | +-/ |
| 11 | +import Mathlib.LinearAlgebra.Basis |
| 12 | +import Mathlib.LinearAlgebra.Multilinear.Basic |
| 13 | + |
| 14 | +/-! |
| 15 | +# Multilinear maps in relation to bases. |
| 16 | +
|
| 17 | +This file proves lemmas about the action of multilinear maps on basis vectors. |
| 18 | +
|
| 19 | +## TODO |
| 20 | +
|
| 21 | + * Refactor the proofs in terms of bases of tensor products, once there is an equivalent of |
| 22 | + `Basis.tensorProduct` for `pi_tensor_product`. |
| 23 | +
|
| 24 | +-/ |
| 25 | + |
| 26 | + |
| 27 | +open MultilinearMap |
| 28 | + |
| 29 | +variable {R : Type _} {ι : Type _} {n : ℕ} {M : Fin n → Type _} {M₂ : Type _} {M₃ : Type _} |
| 30 | + |
| 31 | +variable [CommSemiring R] [AddCommMonoid M₂] [AddCommMonoid M₃] [∀ i, AddCommMonoid (M i)] |
| 32 | + |
| 33 | +variable [∀ i, Module R (M i)] [Module R M₂] [Module R M₃] |
| 34 | + |
| 35 | +/-- Two multilinear maps indexed by `Fin n` are equal if they are equal when all arguments are |
| 36 | +basis vectors. -/ |
| 37 | +theorem Basis.ext_multilinear_fin {f g : MultilinearMap R M M₂} {ι₁ : Fin n → Type _} |
| 38 | + (e : ∀ i, Basis (ι₁ i) R (M i)) |
| 39 | + (h : ∀ v : ∀ i, ι₁ i, (f fun i => e i (v i)) = g fun i => e i (v i)) : f = g := by |
| 40 | + induction' n with m hm |
| 41 | + · ext x |
| 42 | + convert h finZeroElim <;> |
| 43 | + -- Porting note: added below |
| 44 | + · rename_i x |
| 45 | + apply finZeroElim x |
| 46 | + · apply Function.LeftInverse.injective uncurry_curryLeft |
| 47 | + refine' Basis.ext (e 0) _ |
| 48 | + intro i |
| 49 | + apply hm (Fin.tail e) |
| 50 | + intro j |
| 51 | + convert h (Fin.cons i j) |
| 52 | + iterate 2 |
| 53 | + rw [curryLeft_apply] |
| 54 | + congr 1 with x |
| 55 | + refine' Fin.cases rfl (fun x => _) x |
| 56 | + dsimp [Fin.tail] |
| 57 | + rw [Fin.cons_succ, Fin.cons_succ] |
| 58 | +#align basis.ext_multilinear_fin Basis.ext_multilinear_fin |
| 59 | + |
| 60 | +/-- Two multilinear maps indexed by a `Fintype` are equal if they are equal when all arguments |
| 61 | +are basis vectors. Unlike `Basis.ext_multilinear_fin`, this only uses a single basis; a |
| 62 | +dependently-typed version would still be true, but the proof would need a dependently-typed |
| 63 | +version of `dom_dom_congr`. -/ |
| 64 | +theorem Basis.ext_multilinear [Finite ι] {f g : MultilinearMap R (fun _ : ι => M₂) M₃} {ι₁ : Type _} |
| 65 | + (e : Basis ι₁ R M₂) (h : ∀ v : ι → ι₁, (f fun i => e (v i)) = g fun i => e (v i)) : f = g := by |
| 66 | + cases nonempty_fintype ι |
| 67 | + exact |
| 68 | + (domDomCongr_eq_iff (Fintype.equivFin ι) f g).mp |
| 69 | + (Basis.ext_multilinear_fin (fun _ => e) fun i => h (i ∘ _)) |
| 70 | +#align basis.ext_multilinear Basis.ext_multilinear |
0 commit comments