@@ -36,7 +36,7 @@ variable {α β : Type*} {m : MeasurableSpace α} {μ ν : Measure α}
36
36
37
37
section ConditionallyCompleteLattice
38
38
39
- variable [ConditionallyCompleteLattice β]
39
+ variable [ConditionallyCompleteLattice β] {f : α → β}
40
40
41
41
/-- Essential supremum of `f` with respect to measure `μ`: the smallest `c : β` such that
42
42
`f x ≤ c` a.e. -/
@@ -68,6 +68,32 @@ theorem essSup_const (c : β) (hμ : μ ≠ 0) : essSup (fun _ : α => c) μ = c
68
68
theorem essInf_const (c : β) (hμ : μ ≠ 0 ) : essInf (fun _ : α => c) μ = c :=
69
69
have := NeZero.mk hμ; essInf_const' _
70
70
71
+ section SMul
72
+ variable {R : Type *} [Zero R] [SMulWithZero R ℝ≥0 ∞] [IsScalarTower R ℝ≥0 ∞ ℝ≥0 ∞]
73
+ [NoZeroSMulDivisors R ℝ≥0 ∞] {c : R}
74
+
75
+ @[simp]
76
+ lemma essSup_smul_measure (hc : c ≠ 0 ) (f : α → β) : essSup f (c • μ) = essSup f μ := by
77
+ simp_rw [essSup, Measure.ae_smul_measure_eq hc]
78
+
79
+ end SMul
80
+
81
+ variable [Nonempty α]
82
+
83
+ lemma essSup_eq_ciSup (hμ : ∀ a, μ {a} ≠ 0 ) (hf : BddAbove (Set.range f)) :
84
+ essSup f μ = ⨆ a, f a := by rw [essSup, ae_eq_top.2 hμ, limsup_top_eq_ciSup hf]
85
+
86
+ lemma essInf_eq_ciInf (hμ : ∀ a, μ {a} ≠ 0 ) (hf : BddBelow (Set.range f)) :
87
+ essInf f μ = ⨅ a, f a := by rw [essInf, ae_eq_top.2 hμ, liminf_top_eq_ciInf hf]
88
+
89
+ variable [MeasurableSingletonClass α]
90
+
91
+ @[simp] lemma essSup_count_eq_ciSup (hf : BddAbove (Set.range f)) :
92
+ essSup f .count = ⨆ a, f a := essSup_eq_ciSup (by simp) hf
93
+
94
+ @[simp] lemma essInf_count_eq_ciInf (hf : BddBelow (Set.range f)) :
95
+ essInf f .count = ⨅ a, f a := essInf_eq_ciInf (by simp) hf
96
+
71
97
end ConditionallyCompleteLattice
72
98
73
99
section ConditionallyCompleteLinearOrder
@@ -172,10 +198,6 @@ theorem essInf_antitone_measure {f : α → β} (hμν : μ ≪ ν) : essInf f
172
198
refine liminf_le_liminf_of_le (Measure.ae_le_iff_absolutelyContinuous.mpr hμν) ?_ ?_
173
199
all_goals isBoundedDefault
174
200
175
- theorem essSup_smul_measure {f : α → β} {c : ℝ≥0 ∞} (hc : c ≠ 0 ) :
176
- essSup f (c • μ) = essSup f μ := by
177
- simp_rw [essSup, Measure.ae_smul_measure_eq hc]
178
-
179
201
lemma essSup_eq_iSup (hμ : ∀ a, μ {a} ≠ 0 ) (f : α → β) : essSup f μ = ⨆ i, f i := by
180
202
rw [essSup, ae_eq_top.2 hμ, limsup_top_eq_iSup]
181
203
0 commit comments