Skip to content

Commit 7c4340d

Browse files
committed
feat(EssSup): More conditionally complete lattice lemmas (#17225)
From LeanAPAP
1 parent 0993fe7 commit 7c4340d

File tree

2 files changed

+35
-7
lines changed

2 files changed

+35
-7
lines changed

Mathlib/MeasureTheory/Function/EssSup.lean

Lines changed: 27 additions & 5 deletions
Original file line numberDiff line numberDiff line change
@@ -36,7 +36,7 @@ variable {α β : Type*} {m : MeasurableSpace α} {μ ν : Measure α}
3636

3737
section ConditionallyCompleteLattice
3838

39-
variable [ConditionallyCompleteLattice β]
39+
variable [ConditionallyCompleteLattice β] {f : α → β}
4040

4141
/-- Essential supremum of `f` with respect to measure `μ`: the smallest `c : β` such that
4242
`f x ≤ c` a.e. -/
@@ -68,6 +68,32 @@ theorem essSup_const (c : β) (hμ : μ ≠ 0) : essSup (fun _ : α => c) μ = c
6868
theorem essInf_const (c : β) (hμ : μ ≠ 0) : essInf (fun _ : α => c) μ = c :=
6969
have := NeZero.mk hμ; essInf_const' _
7070

71+
section SMul
72+
variable {R : Type*} [Zero R] [SMulWithZero R ℝ≥0∞] [IsScalarTower R ℝ≥0∞ ℝ≥0∞]
73+
[NoZeroSMulDivisors R ℝ≥0∞] {c : R}
74+
75+
@[simp]
76+
lemma essSup_smul_measure (hc : c ≠ 0) (f : α → β) : essSup f (c • μ) = essSup f μ := by
77+
simp_rw [essSup, Measure.ae_smul_measure_eq hc]
78+
79+
end SMul
80+
81+
variable [Nonempty α]
82+
83+
lemma essSup_eq_ciSup (hμ : ∀ a, μ {a} ≠ 0) (hf : BddAbove (Set.range f)) :
84+
essSup f μ = ⨆ a, f a := by rw [essSup, ae_eq_top.2 hμ, limsup_top_eq_ciSup hf]
85+
86+
lemma essInf_eq_ciInf (hμ : ∀ a, μ {a} ≠ 0) (hf : BddBelow (Set.range f)) :
87+
essInf f μ = ⨅ a, f a := by rw [essInf, ae_eq_top.2 hμ, liminf_top_eq_ciInf hf]
88+
89+
variable [MeasurableSingletonClass α]
90+
91+
@[simp] lemma essSup_count_eq_ciSup (hf : BddAbove (Set.range f)) :
92+
essSup f .count = ⨆ a, f a := essSup_eq_ciSup (by simp) hf
93+
94+
@[simp] lemma essInf_count_eq_ciInf (hf : BddBelow (Set.range f)) :
95+
essInf f .count = ⨅ a, f a := essInf_eq_ciInf (by simp) hf
96+
7197
end ConditionallyCompleteLattice
7298

7399
section ConditionallyCompleteLinearOrder
@@ -172,10 +198,6 @@ theorem essInf_antitone_measure {f : α → β} (hμν : μ ≪ ν) : essInf f
172198
refine liminf_le_liminf_of_le (Measure.ae_le_iff_absolutelyContinuous.mpr hμν) ?_ ?_
173199
all_goals isBoundedDefault
174200

175-
theorem essSup_smul_measure {f : α → β} {c : ℝ≥0∞} (hc : c ≠ 0) :
176-
essSup f (c • μ) = essSup f μ := by
177-
simp_rw [essSup, Measure.ae_smul_measure_eq hc]
178-
179201
lemma essSup_eq_iSup (hμ : ∀ a, μ {a} ≠ 0) (f : α → β) : essSup f μ = ⨆ i, f i := by
180202
rw [essSup, ae_eq_top.2 hμ, limsup_top_eq_iSup]
181203

Mathlib/MeasureTheory/Function/LpSeminorm/Basic.lean

Lines changed: 8 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -794,10 +794,16 @@ theorem eLpNorm'_smul_measure {p : ℝ} (hp : 0 ≤ p) {f : α → F} (c : ℝ
794794
@[deprecated (since := "2024-07-27")]
795795
alias snorm'_smul_measure := eLpNorm'_smul_measure
796796

797-
theorem eLpNormEssSup_smul_measure {f : α → F} {c : ℝ≥0∞} (hc : c ≠ 0) :
797+
section SMul
798+
variable {R : Type*} [Zero R] [SMulWithZero R ℝ≥0∞] [IsScalarTower R ℝ≥0∞ ℝ≥0∞]
799+
[NoZeroSMulDivisors R ℝ≥0∞] {c : R}
800+
801+
@[simp] lemma eLpNormEssSup_smul_measure (hc : c ≠ 0) (f : α → F) :
798802
eLpNormEssSup f (c • μ) = eLpNormEssSup f μ := by
799803
simp_rw [eLpNormEssSup]
800-
exact essSup_smul_measure hc
804+
exact essSup_smul_measure hc _
805+
806+
end SMul
801807

802808
@[deprecated (since := "2024-07-27")]
803809
alias snormEssSup_smul_measure := eLpNormEssSup_smul_measure

0 commit comments

Comments
 (0)