File tree Expand file tree Collapse file tree 2 files changed +11
-11
lines changed Expand file tree Collapse file tree 2 files changed +11
-11
lines changed Original file line number Diff line number Diff line change @@ -1209,25 +1209,24 @@ theorem toSet_image (f : ZFSet → ZFSet) [Definable₁ f] (x : ZFSet) :
1209
1209
ext
1210
1210
simp
1211
1211
1212
- /-- The range of an indexed family of sets. The universes allow for a more general index type
1213
- without manual use of `ULift`. -/
1214
- noncomputable def range {α : Type u} (f : α → ZFSet.{max u v}) : ZFSet.{max u v} :=
1215
- ⟦⟨ULift.{v} α, Quotient.out ∘ f ∘ ULift.down⟩⟧
1212
+ /-- The range of a type-indexed family of sets. -/
1213
+ noncomputable def range {α} [Small.{u} α] (f : α → ZFSet.{u}) : ZFSet.{u} :=
1214
+ ⟦⟨_, Quotient.out ∘ f ∘ (equivShrink α).symm⟩⟧
1216
1215
1217
1216
@[simp]
1218
- theorem mem_range {α : Type u} {f : α → ZFSet.{max u v }} {x : ZFSet.{max u v }} :
1219
- x ∈ range.{u, v} f ↔ x ∈ Set.range f :=
1217
+ theorem mem_range {α} [Small.{ u} α] {f : α → ZFSet.{u }} {x : ZFSet.{u }} :
1218
+ x ∈ range f ↔ x ∈ Set.range f :=
1220
1219
Quotient.inductionOn x fun y => by
1221
1220
constructor
1222
1221
· rintro ⟨z, hz⟩
1223
- exact ⟨z.down , Quotient.eq_mk_iff_out.2 hz.symm⟩
1222
+ exact ⟨(equivShrink α).symm z , Quotient.eq_mk_iff_out.2 hz.symm⟩
1224
1223
· rintro ⟨z, hz⟩
1225
- use ULift.up z
1224
+ use equivShrink α z
1226
1225
simpa [hz] using PSet.Equiv.symm (Quotient.mk_out y)
1227
1226
1228
1227
@[simp]
1229
- theorem toSet_range {α : Type u} (f : α → ZFSet.{max u v }) :
1230
- (range.{u, v} f).toSet = Set.range f := by
1228
+ theorem toSet_range {α} [Small.{ u} α] (f : α → ZFSet.{u }) :
1229
+ (range f).toSet = Set.range f := by
1231
1230
ext
1232
1231
simp
1233
1232
Original file line number Diff line number Diff line change @@ -3,6 +3,7 @@ Copyright (c) 2024 Dexin Zhang. All rights reserved.
3
3
Released under Apache 2.0 license as described in the file LICENSE.
4
4
Authors: Dexin Zhang
5
5
-/
6
+ import Mathlib.Logic.UnivLE
6
7
import Mathlib.SetTheory.Ordinal.Rank
7
8
import Mathlib.SetTheory.ZFC.Basic
8
9
@@ -194,7 +195,7 @@ theorem le_succ_rank_sUnion (x : ZFSet) : rank x ≤ succ (rank (⋃₀ x)) := b
194
195
exists z
195
196
196
197
@[simp]
197
- theorem rank_range {α : Type u} (f : α → ZFSet.{max u v }) :
198
+ theorem rank_range {α : Type *} [Small.{ u} α] (f : α → ZFSet.{u }) :
198
199
rank (range f) = ⨆ i, succ (rank (f i)) := by
199
200
apply (Ordinal.iSup_le _).antisymm'
200
201
· simpa [rank_le_iff, ← succ_le_iff] using Ordinal.le_iSup _
You can’t perform that action at this time.
0 commit comments