Skip to content

Commit 7dfc12d

Browse files
committed
feat(Analysis/Convex/Cone/Proper): define ProperCone.positive extending ConvexCone.positive (#6059)
Defines `ProperCone.positive` extending `ConvexCone.positive`. Part of #6058
1 parent 30c87ba commit 7dfc12d

File tree

1 file changed

+23
-1
lines changed

1 file changed

+23
-1
lines changed

Mathlib/Analysis/Convex/Cone/Proper.lean

Lines changed: 23 additions & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -21,7 +21,6 @@ linear programs, the results from this file can be used to prove duality theorem
2121
2222
The next steps are:
2323
- Add convex_cone_class that extends set_like and replace the below instance
24-
- Define the positive cone as a proper cone.
2524
- Define primal and dual cone programs and prove weak duality.
2625
- Prove regular and strong duality for cone programs using Farkas' lemma (see reference).
2726
- Define linear programs and prove LP duality as a special case of cone duality.
@@ -125,6 +124,29 @@ protected theorem isClosed (K : ProperCone 𝕜 E) : IsClosed (K : Set E) :=
125124

126125
end SMul
127126

127+
section PositiveCone
128+
129+
variable (𝕜 E)
130+
variable [OrderedSemiring 𝕜] [OrderedAddCommGroup E] [Module 𝕜 E] [OrderedSMul 𝕜 E]
131+
[TopologicalSpace E] [OrderClosedTopology E]
132+
133+
/-- The positive cone is the proper cone formed by the set of nonnegative elements in an ordered
134+
module. -/
135+
def positive : ProperCone 𝕜 E where
136+
toConvexCone := ConvexCone.positive 𝕜 E
137+
nonempty' := ⟨0, ConvexCone.pointed_positive _ _⟩
138+
is_closed' := isClosed_Ici
139+
140+
@[simp]
141+
theorem mem_positive {x : E} : x ∈ positive 𝕜 E ↔ 0 ≤ x :=
142+
Iff.rfl
143+
144+
@[simp]
145+
theorem coe_positive : ↑(positive 𝕜 E) = ConvexCone.positive 𝕜 E :=
146+
rfl
147+
148+
end PositiveCone
149+
128150
section Module
129151

130152
variable {𝕜 : Type _} [OrderedSemiring 𝕜]

0 commit comments

Comments
 (0)