@@ -733,10 +733,15 @@ protected nonrec def lid : R ⊗[R] A ≃ₐ[R] A :=
733
733
@[simp] theorem lid_toLinearEquiv :
734
734
(TensorProduct.lid R A).toLinearEquiv = _root_.TensorProduct.lid R A := rfl
735
735
736
+ variable {R} {A} in
736
737
@[simp]
737
- theorem lid_tmul (r : R) (a : A) : ( TensorProduct.lid R A : R ⊗ A → A) (r ⊗ₜ a) = r • a := rfl
738
+ theorem lid_tmul (r : R) (a : A) : TensorProduct.lid R A (r ⊗ₜ a) = r • a := rfl
738
739
#align algebra.tensor_product.lid_tmul Algebra.TensorProduct.lid_tmul
739
740
741
+ variable {A} in
742
+ @[simp]
743
+ theorem lid_symm_apply (a : A) : (TensorProduct.lid R A).symm a = 1 ⊗ₜ a := rfl
744
+
740
745
variable (S)
741
746
742
747
/-- The base ring is a right identity for the tensor product of algebra, up to algebra isomorphism.
@@ -757,6 +762,9 @@ variable {R A} in
757
762
theorem rid_tmul (r : R) (a : A) : TensorProduct.rid R S A (a ⊗ₜ r) = r • a := rfl
758
763
#align algebra.tensor_product.rid_tmul Algebra.TensorProduct.rid_tmul
759
764
765
+ variable {A} in
766
+ @[simp]
767
+ theorem rid_symm_apply (a : A) : (TensorProduct.rid R S A).symm a = a ⊗ₜ 1 := rfl
760
768
761
769
section
762
770
@@ -771,12 +779,23 @@ protected def comm : A ⊗[R] B ≃ₐ[R] B ⊗[R] A :=
771
779
@[simp] theorem comm_toLinearEquiv :
772
780
(Algebra.TensorProduct.comm R A B).toLinearEquiv = _root_.TensorProduct.comm R A B := rfl
773
781
782
+ variable {A B} in
774
783
@[simp]
775
784
theorem comm_tmul (a : A) (b : B) :
776
- ( TensorProduct.comm R A B : A ⊗[R] B → B ⊗[R] A) (a ⊗ₜ b) = b ⊗ₜ a :=
785
+ TensorProduct.comm R A B (a ⊗ₜ b) = b ⊗ₜ a :=
777
786
rfl
778
787
#align algebra.tensor_product.comm_tmul Algebra.TensorProduct.comm_tmul
779
788
789
+ variable {A B} in
790
+ @[simp]
791
+ theorem comm_symm_tmul (a : A) (b : B) :
792
+ (TensorProduct.comm R A B).symm (b ⊗ₜ a) = a ⊗ₜ b :=
793
+ rfl
794
+
795
+ theorem comm_symm :
796
+ (TensorProduct.comm R A B).symm = TensorProduct.comm R B A := by
797
+ ext; rfl
798
+
780
799
theorem adjoin_tmul_eq_top : adjoin R { t : A ⊗[R] B | ∃ a b, a ⊗ₜ[R] b = t } = ⊤ :=
781
800
top_le_iff.mp <| (top_le_iff.mpr <| span_tmul_eq_top R A B).trans (span_le_adjoin R _)
782
801
#align algebra.tensor_product.adjoin_tmul_eq_top Algebra.TensorProduct.adjoin_tmul_eq_top
@@ -816,10 +835,15 @@ variable {A B C}
816
835
817
836
@[simp]
818
837
theorem assoc_tmul (a : A) (b : B) (c : C) :
819
- Algebra.TensorProduct.assoc R A B C (a ⊗ₜ b ⊗ₜ c) = a ⊗ₜ (b ⊗ₜ c) :=
838
+ Algebra.TensorProduct.assoc R A B C (( a ⊗ₜ b) ⊗ₜ c) = a ⊗ₜ (b ⊗ₜ c) :=
820
839
rfl
821
840
#align algebra.tensor_product.assoc_tmul Algebra.TensorProduct.assoc_tmul
822
841
842
+ @[simp]
843
+ theorem assoc_symm_tmul (a : A) (b : B) (c : C) :
844
+ (Algebra.TensorProduct.assoc R A B C).symm (a ⊗ₜ (b ⊗ₜ c)) = (a ⊗ₜ b) ⊗ₜ c :=
845
+ rfl
846
+
823
847
end
824
848
825
849
variable {R S A}
0 commit comments