@@ -69,14 +69,14 @@ theorem zero_divOf (g : G) : (0 : k[G]) /ᵒᶠ g = 0 :=
69
69
70
70
@[simp]
71
71
theorem divOf_zero (x : k[G]) : x /ᵒᶠ 0 = x := by
72
- refine Finsupp. ext fun _ => ?_ -- Porting note (https://github.com/leanprover-community/mathlib4/issues/11041): `ext` doesn't work
72
+ ext
73
73
simp only [AddMonoidAlgebra.divOf_apply, zero_add]
74
74
75
75
theorem add_divOf (x y : k[G]) (g : G) : (x + y) /ᵒᶠ g = x /ᵒᶠ g + y /ᵒᶠ g :=
76
76
map_add (Finsupp.comapDomain.addMonoidHom _) _ _
77
77
78
78
theorem divOf_add (x : k[G]) (a b : G) : x /ᵒᶠ (a + b) = x /ᵒᶠ a /ᵒᶠ b := by
79
- refine Finsupp. ext fun _ => ?_ -- Porting note (https://github.com/leanprover-community/mathlib4/issues/11041): `ext` doesn't work
79
+ ext
80
80
simp only [AddMonoidAlgebra.divOf_apply, add_assoc]
81
81
82
82
/-- A bundled version of `AddMonoidAlgebra.divOf`. -/
@@ -93,13 +93,13 @@ noncomputable def divOfHom : Multiplicative G →* AddMonoid.End k[G] where
93
93
(divOf_add _ _ _)
94
94
95
95
theorem of'_mul_divOf (a : G) (x : k[G]) : of' k G a * x /ᵒᶠ a = x := by
96
- refine Finsupp. ext fun _ => ?_ -- Porting note (https://github.com/leanprover-community/mathlib4/issues/11041): `ext` doesn't work
96
+ ext
97
97
rw [AddMonoidAlgebra.divOf_apply, of'_apply, single_mul_apply_aux, one_mul]
98
98
intro c hc
99
99
exact add_right_inj _
100
100
101
101
theorem mul_of'_divOf (x : k[G]) (a : G) : x * of' k G a /ᵒᶠ a = x := by
102
- refine Finsupp. ext fun _ => ?_ -- Porting note (https://github.com/leanprover-community/mathlib4/issues/11041): `ext` doesn't work
102
+ ext
103
103
rw [AddMonoidAlgebra.divOf_apply, of'_apply, mul_single_apply_aux, mul_one]
104
104
intro c hc
105
105
rw [add_comm]
@@ -133,14 +133,14 @@ theorem modOf_apply_self_add (x : k[G]) (g : G) (d : G) : (x %ᵒᶠ g) (g + d)
133
133
modOf_apply_of_exists_add _ _ _ ⟨_, rfl⟩
134
134
135
135
theorem of'_mul_modOf (g : G) (x : k[G]) : of' k G g * x %ᵒᶠ g = 0 := by
136
- refine Finsupp. ext fun g' => ?_ -- Porting note (https://github.com/leanprover-community/mathlib4/issues/11041): `ext g'` doesn't work
136
+ ext g'
137
137
rw [Finsupp.zero_apply]
138
138
obtain ⟨d, rfl⟩ | h := em (∃ d, g' = g + d)
139
139
· rw [modOf_apply_self_add]
140
140
· rw [modOf_apply_of_not_exists_add _ _ _ h, of'_apply, single_mul_apply_of_not_exists_add _ _ h]
141
141
142
142
theorem mul_of'_modOf (x : k[G]) (g : G) : x * of' k G g %ᵒᶠ g = 0 := by
143
- refine Finsupp. ext fun g' => ?_ -- Porting note (https://github.com/leanprover-community/mathlib4/issues/11041): `ext g'` doesn't work
143
+ ext g'
144
144
rw [Finsupp.zero_apply]
145
145
obtain ⟨d, rfl⟩ | h := em (∃ d, g' = g + d)
146
146
· rw [modOf_apply_self_add]
@@ -152,7 +152,7 @@ theorem of'_modOf (g : G) : of' k G g %ᵒᶠ g = 0 := by
152
152
153
153
theorem divOf_add_modOf (x : k[G]) (g : G) :
154
154
of' k G g * (x /ᵒᶠ g) + x %ᵒᶠ g = x := by
155
- refine Finsupp. ext fun g' => ?_ -- Porting note (https://github.com/leanprover-community/mathlib4/issues/11041): `ext` doesn't work
155
+ ext g'
156
156
rw [Finsupp.add_apply] -- Porting note: changed from `simp_rw` which can't see through the type
157
157
obtain ⟨d, rfl⟩ | h := em (∃ d, g' = g + d)
158
158
swap
0 commit comments