@@ -415,8 +415,7 @@ variable {ι : Type*} [Fintype ι] {e : E} {Fm : ι → Type*}
415
415
lemma FormalMultilinearSeries.radius_pi_le (p : Π i, FormalMultilinearSeries 𝕜 E (Fm i)) (i : ι) :
416
416
(FormalMultilinearSeries.pi p).radius ≤ (p i).radius := by
417
417
apply le_of_forall_nnreal_lt (fun r' hr' ↦ ?_)
418
- obtain ⟨C, -, hC⟩ : ∃ C > 0 , ∀ (n : ℕ),
419
- ‖pi p n‖ * ↑r' ^ n ≤ C := norm_mul_pow_le_of_lt_radius _ hr'
418
+ obtain ⟨C, -, hC⟩ : ∃ C > 0 , ∀ n, ‖pi p n‖ * ↑r' ^ n ≤ C := norm_mul_pow_le_of_lt_radius _ hr'
420
419
apply le_radius_of_bound _ C (fun n ↦ ?_)
421
420
apply le_trans _ (hC n)
422
421
gcongr
@@ -460,10 +459,12 @@ lemma HasFPowerSeriesWithinOnBall.pi
460
459
hasSum {_} m hy := Pi.hasSum.2 (fun i ↦ (hf i).hasSum m hy)
461
460
462
461
lemma hasFPowerSeriesWithinOnBall_pi_iff (hr : 0 < r) :
463
- HasFPowerSeriesWithinOnBall (fun x ↦ (f · x)) (FormalMultilinearSeries.pi p) s e r
464
- ↔ ∀ i, HasFPowerSeriesWithinOnBall (f i) (p i) s e r :=
465
- ⟨fun h i ↦ ⟨h.r_le.trans (FormalMultilinearSeries.radius_pi_le _ _), hr,
466
- fun m hy ↦ Pi.hasSum.1 (h.hasSum m hy) i⟩, fun h ↦ .pi h hr⟩
462
+ HasFPowerSeriesWithinOnBall (fun x ↦ (f · x)) (FormalMultilinearSeries.pi p) s e r ↔
463
+ ∀ i, HasFPowerSeriesWithinOnBall (f i) (p i) s e r where
464
+ mp h i :=
465
+ ⟨h.r_le.trans (FormalMultilinearSeries.radius_pi_le _ _), hr,
466
+ fun m hy ↦ Pi.hasSum.1 (h.hasSum m hy) i⟩
467
+ mpr h := .pi h hr
467
468
468
469
lemma HasFPowerSeriesOnBall.pi
469
470
(hf : ∀ i, HasFPowerSeriesOnBall (f i) (p i) e r) (hr : 0 < r) :
@@ -472,8 +473,8 @@ lemma HasFPowerSeriesOnBall.pi
472
473
exact HasFPowerSeriesWithinOnBall.pi hf hr
473
474
474
475
lemma hasFPowerSeriesOnBall_pi_iff (hr : 0 < r) :
475
- HasFPowerSeriesOnBall (fun x ↦ (f · x)) (FormalMultilinearSeries.pi p) e r
476
- ↔ ∀ i, HasFPowerSeriesOnBall (f i) (p i) e r := by
476
+ HasFPowerSeriesOnBall (fun x ↦ (f · x)) (FormalMultilinearSeries.pi p) e r ↔
477
+ ∀ i, HasFPowerSeriesOnBall (f i) (p i) e r := by
477
478
simp_rw [← hasFPowerSeriesWithinOnBall_univ]
478
479
exact hasFPowerSeriesWithinOnBall_pi_iff hr
479
480
@@ -486,8 +487,8 @@ lemma HasFPowerSeriesWithinAt.pi
486
487
exact ⟨r, HasFPowerSeriesWithinOnBall.pi hr r_pos⟩
487
488
488
489
lemma hasFPowerSeriesWithinAt_pi_iff :
489
- HasFPowerSeriesWithinAt (fun x ↦ (f · x)) (FormalMultilinearSeries.pi p) s e
490
- ↔ ∀ i, HasFPowerSeriesWithinAt (f i) (p i) s e := by
490
+ HasFPowerSeriesWithinAt (fun x ↦ (f · x)) (FormalMultilinearSeries.pi p) s e ↔
491
+ ∀ i, HasFPowerSeriesWithinAt (f i) (p i) s e := by
491
492
refine ⟨fun h i ↦ ?_, fun h ↦ .pi h⟩
492
493
obtain ⟨r, hr⟩ := h
493
494
exact ⟨r, (hasFPowerSeriesWithinOnBall_pi_iff hr.r_pos).1 hr i⟩
@@ -499,8 +500,8 @@ lemma HasFPowerSeriesAt.pi
499
500
exact HasFPowerSeriesWithinAt.pi hf
500
501
501
502
lemma hasFPowerSeriesAt_pi_iff :
502
- HasFPowerSeriesAt (fun x ↦ (f · x)) (FormalMultilinearSeries.pi p) e
503
- ↔ ∀ i, HasFPowerSeriesAt (f i) (p i) e := by
503
+ HasFPowerSeriesAt (fun x ↦ (f · x)) (FormalMultilinearSeries.pi p) e ↔
504
+ ∀ i, HasFPowerSeriesAt (f i) (p i) e := by
504
505
simp_rw [← hasFPowerSeriesWithinAt_univ]
505
506
exact hasFPowerSeriesWithinAt_pi_iff
506
507
0 commit comments