We read every piece of feedback, and take your input very seriously.
To see all available qualifiers, see our documentation.
There was an error while loading. Please reload this page.
Set.Infinite.encard_eq
1 parent 1a55629 commit 86672daCopy full SHA for 86672da
Mathlib/Data/Set/Card.lean
@@ -89,7 +89,7 @@ theorem toENat_cardinalMk_subtype (P : α → Prop) :
89
encard (s : Set α) = s.card := by
90
rw [Finite.encard_eq_coe_toFinset_card (Finset.finite_toSet s)]; simp
91
92
-theorem Infinite.encard_eq {s : Set α} (h : s.Infinite) : s.encard = ⊤ := by
+@[simp] theorem Infinite.encard_eq {s : Set α} (h : s.Infinite) : s.encard = ⊤ := by
93
have := h.to_subtype
94
rw [encard, ENat.card_eq_top_of_infinite]
95
0 commit comments