|
| 1 | +/- |
| 2 | +Copyright (c) 2020 Yury Kudryashov. All rights reserved. |
| 3 | +Released under Apache 2.0 license as described in the file LICENSE. |
| 4 | +Authors: Yury Kudryashov |
| 5 | +
|
| 6 | +! This file was ported from Lean 3 source module dynamics.fixed_points.basic |
| 7 | +! leanprover-community/mathlib commit 550b58538991c8977703fdeb7c9d51a5aa27df11 |
| 8 | +! Please do not edit these lines, except to modify the commit id |
| 9 | +! if you have ported upstream changes. |
| 10 | +-/ |
| 11 | +import Mathlib.Data.Set.Function |
| 12 | +import Mathlib.Logic.Function.Iterate |
| 13 | +import Mathlib.GroupTheory.Perm.Basic |
| 14 | + |
| 15 | +/-! |
| 16 | +# Fixed points of a self-map |
| 17 | +
|
| 18 | +In this file we define |
| 19 | +
|
| 20 | +* the predicate `IsFixedPt f x := f x = x`; |
| 21 | +* the set `fixedPoints f` of fixed points of a self-map `f`. |
| 22 | +
|
| 23 | +We also prove some simple lemmas about `IsFixedPt` and `∘`, `iterate`, and `semiconj`. |
| 24 | +
|
| 25 | +## Tags |
| 26 | +
|
| 27 | +fixed point |
| 28 | +-/ |
| 29 | + |
| 30 | + |
| 31 | +open Equiv |
| 32 | + |
| 33 | +universe u v |
| 34 | + |
| 35 | +variable {α : Type u} {β : Type v} {f fa g : α → α} {x y : α} {fb : β → β} {m n k : ℕ} {e : Perm α} |
| 36 | + |
| 37 | +namespace Function |
| 38 | + |
| 39 | +/-- A point `x` is a fixed point of `f : α → α` if `f x = x`. -/ |
| 40 | +def IsFixedPt (f : α → α) (x : α) := |
| 41 | + f x = x |
| 42 | +#align function.is_fixed_pt Function.IsFixedPt |
| 43 | + |
| 44 | +/-- Every point is a fixed point of `id`. -/ |
| 45 | +theorem isFixedPt_id (x : α) : IsFixedPt id x := |
| 46 | + (rfl : _) |
| 47 | +#align function.is_fixed_pt_id Function.isFixedPt_id |
| 48 | + |
| 49 | +namespace IsFixedPt |
| 50 | + |
| 51 | +instance instDecidable [h : DecidableEq α] {f : α → α} {x : α} : Decidable (IsFixedPt f x) := |
| 52 | + h (f x) x |
| 53 | + |
| 54 | +/-- If `x` is a fixed point of `f`, then `f x = x`. This is useful, e.g., for `rw` or `simp`.-/ |
| 55 | +protected theorem eq (hf : IsFixedPt f x) : f x = x := |
| 56 | + hf |
| 57 | +#align function.is_fixed_pt.eq Function.IsFixedPt.eq |
| 58 | + |
| 59 | +/-- If `x` is a fixed point of `f` and `g`, then it is a fixed point of `f ∘ g`. -/ |
| 60 | +protected theorem comp (hf : IsFixedPt f x) (hg : IsFixedPt g x) : IsFixedPt (f ∘ g) x := |
| 61 | + calc |
| 62 | + f (g x) = f x := congr_arg f hg |
| 63 | + _ = x := hf |
| 64 | + |
| 65 | +#align function.is_fixed_pt.comp Function.IsFixedPt.comp |
| 66 | + |
| 67 | +/-- If `x` is a fixed point of `f`, then it is a fixed point of `f^[n]`. -/ |
| 68 | +protected theorem iterate (hf : IsFixedPt f x) (n : ℕ) : IsFixedPt (f^[n]) x := |
| 69 | + iterate_fixed hf n |
| 70 | +#align function.is_fixed_pt.iterate Function.IsFixedPt.iterate |
| 71 | + |
| 72 | +/-- If `x` is a fixed point of `f ∘ g` and `g`, then it is a fixed point of `f`. -/ |
| 73 | +theorem left_of_comp (hfg : IsFixedPt (f ∘ g) x) (hg : IsFixedPt g x) : IsFixedPt f x := |
| 74 | + calc |
| 75 | + f x = f (g x) := congr_arg f hg.symm |
| 76 | + _ = x := hfg |
| 77 | + |
| 78 | +#align function.is_fixed_pt.left_of_comp Function.IsFixedPt.left_of_comp |
| 79 | + |
| 80 | +/-- If `x` is a fixed point of `f` and `g` is a left inverse of `f`, then `x` is a fixed |
| 81 | +point of `g`. -/ |
| 82 | +theorem to_leftInverse (hf : IsFixedPt f x) (h : LeftInverse g f) : IsFixedPt g x := |
| 83 | + calc |
| 84 | + g x = g (f x) := congr_arg g hf.symm |
| 85 | + _ = x := h x |
| 86 | + |
| 87 | +#align function.is_fixed_pt.to_left_inverse Function.IsFixedPt.to_leftInverse |
| 88 | + |
| 89 | +/-- If `g` (semi)conjugates `fa` to `fb`, then it sends fixed points of `fa` to fixed points |
| 90 | +of `fb`. -/ |
| 91 | +protected theorem map {x : α} (hx : IsFixedPt fa x) {g : α → β} (h : Semiconj g fa fb) : |
| 92 | + IsFixedPt fb (g x) := |
| 93 | + calc |
| 94 | + fb (g x) = g (fa x) := (h.eq x).symm |
| 95 | + _ = g x := congr_arg g hx |
| 96 | + |
| 97 | +#align function.is_fixed_pt.map Function.IsFixedPt.map |
| 98 | + |
| 99 | +protected theorem apply {x : α} (hx : IsFixedPt f x) : IsFixedPt f (f x) := by convert hx |
| 100 | +#align function.is_fixed_pt.apply Function.IsFixedPt.apply |
| 101 | + |
| 102 | +theorem preimage_iterate {s : Set α} (h : IsFixedPt (Set.preimage f) s) (n : ℕ) : |
| 103 | + IsFixedPt (Set.preimage (f^[n])) s := by |
| 104 | + rw [Set.preimage_iterate_eq] |
| 105 | + exact h.iterate n |
| 106 | +#align function.is_fixed_pt.preimage_iterate Function.IsFixedPt.preimage_iterate |
| 107 | + |
| 108 | +protected theorem equiv_symm (h : IsFixedPt e x) : IsFixedPt e.symm x := |
| 109 | + h.to_leftInverse e.leftInverse_symm |
| 110 | +#align function.is_fixed_pt.equiv_symm Function.IsFixedPt.equiv_symm |
| 111 | + |
| 112 | +protected theorem perm_inv (h : IsFixedPt e x) : IsFixedPt (⇑e⁻¹) x := |
| 113 | + h.equiv_symm |
| 114 | +#align function.is_fixed_pt.perm_inv Function.IsFixedPt.perm_inv |
| 115 | + |
| 116 | +protected theorem perm_pow (h : IsFixedPt e x) (n : ℕ) : IsFixedPt (⇑(e ^ n)) x := by |
| 117 | + rw [← Equiv.Perm.iterate_eq_pow] |
| 118 | + exact h.iterate _ |
| 119 | +#align function.is_fixed_pt.perm_pow Function.IsFixedPt.perm_pow |
| 120 | + |
| 121 | +protected theorem perm_zpow (h : IsFixedPt e x) : ∀ n : ℤ, IsFixedPt (⇑(e ^ n)) x |
| 122 | + | Int.ofNat _ => h.perm_pow _ |
| 123 | + | Int.negSucc n => (h.perm_pow <| n + 1).perm_inv |
| 124 | +#align function.is_fixed_pt.perm_zpow Function.IsFixedPt.perm_zpow |
| 125 | + |
| 126 | +end IsFixedPt |
| 127 | + |
| 128 | +@[simp] |
| 129 | +theorem Injective.isFixedPt_apply_iff (hf : Injective f) {x : α} : |
| 130 | + IsFixedPt f (f x) ↔ IsFixedPt f x := |
| 131 | + ⟨fun h => hf h.eq, IsFixedPt.apply⟩ |
| 132 | +#align function.injective.is_fixed_pt_apply_iff Function.Injective.isFixedPt_apply_iff |
| 133 | + |
| 134 | +/-- The set of fixed points of a map `f : α → α`. -/ |
| 135 | +def fixedPoints (f : α → α) : Set α := |
| 136 | + { x : α | IsFixedPt f x } |
| 137 | +#align function.fixed_points Function.fixedPoints |
| 138 | + |
| 139 | +instance fixedPoints.instDecidable [DecidableEq α] (f : α → α) (x : α) : |
| 140 | + Decidable (x ∈ fixedPoints f) := |
| 141 | + IsFixedPt.instDecidable |
| 142 | +#align function.fixed_points.decidable Function.fixedPoints.instDecidable |
| 143 | + |
| 144 | +@[simp] |
| 145 | +theorem mem_fixedPoints : x ∈ fixedPoints f ↔ IsFixedPt f x := |
| 146 | + Iff.rfl |
| 147 | +#align function.mem_fixed_points Function.mem_fixedPoints |
| 148 | + |
| 149 | +theorem mem_fixedPoints_iff {α : Type _} {f : α → α} {x : α} : x ∈ fixedPoints f ↔ f x = x := by |
| 150 | + rfl |
| 151 | +#align function.mem_fixed_points_iff Function.mem_fixedPoints_iff |
| 152 | + |
| 153 | +@[simp] |
| 154 | +theorem fixedPoints_id : fixedPoints (@id α) = Set.univ := |
| 155 | + Set.ext fun _ => by simpa using isFixedPt_id _ |
| 156 | +#align function.fixed_points_id Function.fixedPoints_id |
| 157 | + |
| 158 | +theorem fixedPoints_subset_range : fixedPoints f ⊆ Set.range f := fun x hx => ⟨x, hx⟩ |
| 159 | +#align function.fixed_points_subset_range Function.fixedPoints_subset_range |
| 160 | + |
| 161 | +/-- If `g` semiconjugates `fa` to `fb`, then it sends fixed points of `fa` to fixed points |
| 162 | +of `fb`. -/ |
| 163 | +theorem Semiconj.maps_to_fixedPoints {g : α → β} (h : Semiconj g fa fb) : |
| 164 | + Set.MapsTo g (fixedPoints fa) (fixedPoints fb) := fun _ hx => hx.map h |
| 165 | +#align function.semiconj.maps_to_fixed_pts Function.Semiconj.maps_to_fixedPoints |
| 166 | + |
| 167 | +/-- Any two maps `f : α → β` and `g : β → α` are inverse of each other on the sets of fixed points |
| 168 | +of `f ∘ g` and `g ∘ f`, respectively. -/ |
| 169 | +theorem invOn_fixedPoints_comp (f : α → β) (g : β → α) : |
| 170 | + Set.InvOn f g (fixedPoints <| f ∘ g) (fixedPoints <| g ∘ f) := |
| 171 | + ⟨fun _ => id, fun _ => id⟩ |
| 172 | +#align function.inv_on_fixed_pts_comp Function.invOn_fixedPoints_comp |
| 173 | + |
| 174 | +/-- Any map `f` sends fixed points of `g ∘ f` to fixed points of `f ∘ g`. -/ |
| 175 | +theorem maps_to_fixedPoints_comp (f : α → β) (g : β → α) : |
| 176 | + Set.MapsTo f (fixedPoints <| g ∘ f) (fixedPoints <| f ∘ g) := fun _ hx => hx.map fun _ => rfl |
| 177 | +#align function.maps_to_fixed_pts_comp Function.maps_to_fixedPoints_comp |
| 178 | + |
| 179 | +/-- Given two maps `f : α → β` and `g : β → α`, `g` is a bijective map between the fixed points |
| 180 | +of `f ∘ g` and the fixed points of `g ∘ f`. The inverse map is `f`, see `invOn_fixedPoints_comp`. -/ |
| 181 | +theorem bijOn_fixedPoints_comp (f : α → β) (g : β → α) : |
| 182 | + Set.BijOn g (fixedPoints <| f ∘ g) (fixedPoints <| g ∘ f) := |
| 183 | + (invOn_fixedPoints_comp f g).bijOn (maps_to_fixedPoints_comp g f) (maps_to_fixedPoints_comp f g) |
| 184 | +#align function.bij_on_fixed_pts_comp Function.bijOn_fixedPoints_comp |
| 185 | + |
| 186 | +/-- If self-maps `f` and `g` commute, then they are inverse of each other on the set of fixed points |
| 187 | +of `f ∘ g`. This is a particular case of `function.invOn_fixedPoints_comp`. -/ |
| 188 | +theorem Commute.invOn_fixedPoints_comp (h : Commute f g) : |
| 189 | + Set.InvOn f g (fixedPoints <| f ∘ g) (fixedPoints <| f ∘ g) := by |
| 190 | + simpa only [h.comp_eq] using Function.invOn_fixedPoints_comp f g |
| 191 | +#align function.commute.inv_on_fixed_pts_comp Function.Commute.invOn_fixedPoints_comp |
| 192 | + |
| 193 | +/-- If self-maps `f` and `g` commute, then `f` is bijective on the set of fixed points of `f ∘ g`. |
| 194 | +This is a particular case of `function.bijOn_fixedPoints_comp`. -/ |
| 195 | +theorem Commute.left_bijOn_fixedPoints_comp (h : Commute f g) : |
| 196 | + Set.BijOn f (fixedPoints <| f ∘ g) (fixedPoints <| f ∘ g) := by |
| 197 | + simpa only [h.comp_eq] using bijOn_fixedPoints_comp g f |
| 198 | +#align function.commute.left_bij_on_fixed_pts_comp Function.Commute.left_bijOn_fixedPoints_comp |
| 199 | + |
| 200 | +/-- If self-maps `f` and `g` commute, then `g` is bijective on the set of fixed points of `f ∘ g`. |
| 201 | +This is a particular case of `function.bijOn_fixedPoints_comp`. -/ |
| 202 | +theorem Commute.right_bijOn_fixedPoints_comp (h : Commute f g) : |
| 203 | + Set.BijOn g (fixedPoints <| f ∘ g) (fixedPoints <| f ∘ g) := by |
| 204 | + simpa only [h.comp_eq] using bijOn_fixedPoints_comp f g |
| 205 | +#align function.commute.right_bij_on_fixed_pts_comp Function.Commute.right_bijOn_fixedPoints_comp |
| 206 | + |
| 207 | +end Function |
0 commit comments