Skip to content

Commit 89d74ab

Browse files
committed
feat: port Geometry.Manifold.Metrizable (#4679)
1 parent 6ece430 commit 89d74ab

File tree

2 files changed

+37
-0
lines changed

2 files changed

+37
-0
lines changed

Mathlib.lean

Lines changed: 1 addition & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -1624,6 +1624,7 @@ import Mathlib.Geometry.Euclidean.Sphere.SecondInter
16241624
import Mathlib.Geometry.Manifold.ChartedSpace
16251625
import Mathlib.Geometry.Manifold.ConformalGroupoid
16261626
import Mathlib.Geometry.Manifold.LocalInvariantProperties
1627+
import Mathlib.Geometry.Manifold.Metrizable
16271628
import Mathlib.Geometry.Manifold.SmoothManifoldWithCorners
16281629
import Mathlib.GroupTheory.Abelianization
16291630
import Mathlib.GroupTheory.Archimedean
Lines changed: 36 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,36 @@
1+
/-
2+
Copyright (c) 2022 Yury Kudryashov. All rights reserved.
3+
Released under Apache 2.0 license as described in the file LICENSE.
4+
Authors: Yury Kudryashov
5+
6+
! This file was ported from Lean 3 source module geometry.manifold.metrizable
7+
! leanprover-community/mathlib commit d1bd9c5df2867c1cb463bc6364446d57bdd9f7f1
8+
! Please do not edit these lines, except to modify the commit id
9+
! if you have ported upstream changes.
10+
-/
11+
import Mathlib.Geometry.Manifold.SmoothManifoldWithCorners
12+
import Mathlib.Topology.Paracompact
13+
import Mathlib.Topology.MetricSpace.Metrizable
14+
15+
/-!
16+
# Metrizability of a σ-compact manifold
17+
18+
In this file we show that a σ-compact Hausdorff topological manifold over a finite dimensional real
19+
vector space is metrizable.
20+
-/
21+
22+
23+
open TopologicalSpace
24+
25+
/-- A σ-compact Hausdorff topological manifold over a finite dimensional real vector space is
26+
metrizable. -/
27+
theorem ManifoldWithCorners.metrizableSpace {E : Type _} [NormedAddCommGroup E] [NormedSpace ℝ E]
28+
[FiniteDimensional ℝ E] {H : Type _} [TopologicalSpace H] (I : ModelWithCorners ℝ E H)
29+
(M : Type _) [TopologicalSpace M] [ChartedSpace H M] [SigmaCompactSpace M] [T2Space M] :
30+
MetrizableSpace M := by
31+
haveI := I.locally_compact; haveI := ChartedSpace.locallyCompact H M
32+
haveI : NormalSpace M := normal_of_paracompact_t2
33+
haveI := I.secondCountableTopology
34+
haveI := ChartedSpace.secondCountable_of_sigma_compact H M
35+
exact metrizableSpace_of_t3_second_countable M
36+
#align manifold_with_corners.metrizable_space ManifoldWithCorners.metrizableSpace

0 commit comments

Comments
 (0)