|
| 1 | +/- |
| 2 | +Copyright (c) 2022 Yury Kudryashov. All rights reserved. |
| 3 | +Released under Apache 2.0 license as described in the file LICENSE. |
| 4 | +Authors: Yury Kudryashov |
| 5 | +
|
| 6 | +! This file was ported from Lean 3 source module geometry.manifold.metrizable |
| 7 | +! leanprover-community/mathlib commit d1bd9c5df2867c1cb463bc6364446d57bdd9f7f1 |
| 8 | +! Please do not edit these lines, except to modify the commit id |
| 9 | +! if you have ported upstream changes. |
| 10 | +-/ |
| 11 | +import Mathlib.Geometry.Manifold.SmoothManifoldWithCorners |
| 12 | +import Mathlib.Topology.Paracompact |
| 13 | +import Mathlib.Topology.MetricSpace.Metrizable |
| 14 | + |
| 15 | +/-! |
| 16 | +# Metrizability of a σ-compact manifold |
| 17 | +
|
| 18 | +In this file we show that a σ-compact Hausdorff topological manifold over a finite dimensional real |
| 19 | +vector space is metrizable. |
| 20 | +-/ |
| 21 | + |
| 22 | + |
| 23 | +open TopologicalSpace |
| 24 | + |
| 25 | +/-- A σ-compact Hausdorff topological manifold over a finite dimensional real vector space is |
| 26 | +metrizable. -/ |
| 27 | +theorem ManifoldWithCorners.metrizableSpace {E : Type _} [NormedAddCommGroup E] [NormedSpace ℝ E] |
| 28 | + [FiniteDimensional ℝ E] {H : Type _} [TopologicalSpace H] (I : ModelWithCorners ℝ E H) |
| 29 | + (M : Type _) [TopologicalSpace M] [ChartedSpace H M] [SigmaCompactSpace M] [T2Space M] : |
| 30 | + MetrizableSpace M := by |
| 31 | + haveI := I.locally_compact; haveI := ChartedSpace.locallyCompact H M |
| 32 | + haveI : NormalSpace M := normal_of_paracompact_t2 |
| 33 | + haveI := I.secondCountableTopology |
| 34 | + haveI := ChartedSpace.secondCountable_of_sigma_compact H M |
| 35 | + exact metrizableSpace_of_t3_second_countable M |
| 36 | +#align manifold_with_corners.metrizable_space ManifoldWithCorners.metrizableSpace |
0 commit comments