@@ -1833,7 +1833,7 @@ theorem LocalHomeomorph.contDiffAt_symm [CompleteSpace E] (f : LocalHomeomorph E
1833
1833
obtain ⟨t, htu, ht, htf⟩ := mem_nhds_iff.mp (Filter.inter_mem hu h_nhds)
1834
1834
use f.target ∩ f.symm ⁻¹' t
1835
1835
refine' ⟨IsOpen.mem_nhds _ _, _⟩
1836
- · exact f.preimage_open_of_open_symm ht
1836
+ · exact f.isOpen_inter_preimage_symm ht
1837
1837
· exact mem_inter ha (mem_preimage.mpr htf)
1838
1838
intro x hx
1839
1839
obtain ⟨hxu, e, he⟩ := htu hx.2
@@ -1937,11 +1937,11 @@ theorem contDiffOn_succ_iff_derivWithin {n : ℕ} (hs : UniqueDiffOn 𝕜 s₂)
1937
1937
1938
1938
/-- A function is `C^(n + 1)` on an open domain if and only if it is
1939
1939
differentiable there, and its derivative (formulated with `deriv`) is `C^n`. -/
1940
- theorem contDiffOn_succ_iff_deriv_of_open {n : ℕ} (hs : IsOpen s₂) :
1940
+ theorem contDiffOn_succ_iff_deriv_of_isOpen {n : ℕ} (hs : IsOpen s₂) :
1941
1941
ContDiffOn 𝕜 (n + 1 : ℕ) f₂ s₂ ↔ DifferentiableOn 𝕜 f₂ s₂ ∧ ContDiffOn 𝕜 n (deriv f₂) s₂ := by
1942
1942
rw [contDiffOn_succ_iff_derivWithin hs.uniqueDiffOn]
1943
- exact Iff.rfl.and (contDiffOn_congr fun _ => derivWithin_of_open hs)
1944
- #align cont_diff_on_succ_iff_deriv_of_open contDiffOn_succ_iff_deriv_of_open
1943
+ exact Iff.rfl.and (contDiffOn_congr fun _ => derivWithin_of_isOpen hs)
1944
+ #align cont_diff_on_succ_iff_deriv_of_open contDiffOn_succ_iff_deriv_of_isOpen
1945
1945
1946
1946
/-- A function is `C^∞` on a domain with unique derivatives if and only if it is differentiable
1947
1947
there, and its derivative (formulated with `derivWithin`) is `C^∞`. -/
@@ -1961,11 +1961,11 @@ theorem contDiffOn_top_iff_derivWithin (hs : UniqueDiffOn 𝕜 s₂) :
1961
1961
1962
1962
/-- A function is `C^∞` on an open domain if and only if it is differentiable
1963
1963
there, and its derivative (formulated with `deriv`) is `C^∞`. -/
1964
- theorem contDiffOn_top_iff_deriv_of_open (hs : IsOpen s₂) :
1964
+ theorem contDiffOn_top_iff_deriv_of_isOpen (hs : IsOpen s₂) :
1965
1965
ContDiffOn 𝕜 ∞ f₂ s₂ ↔ DifferentiableOn 𝕜 f₂ s₂ ∧ ContDiffOn 𝕜 ∞ (deriv f₂) s₂ := by
1966
1966
rw [contDiffOn_top_iff_derivWithin hs.uniqueDiffOn]
1967
- exact Iff.rfl.and <| contDiffOn_congr fun _ => derivWithin_of_open hs
1968
- #align cont_diff_on_top_iff_deriv_of_open contDiffOn_top_iff_deriv_of_open
1967
+ exact Iff.rfl.and <| contDiffOn_congr fun _ => derivWithin_of_isOpen hs
1968
+ #align cont_diff_on_top_iff_deriv_of_open contDiffOn_top_iff_deriv_of_isOpen
1969
1969
1970
1970
protected theorem ContDiffOn.derivWithin (hf : ContDiffOn 𝕜 n f₂ s₂) (hs : UniqueDiffOn 𝕜 s₂)
1971
1971
(hmn : m + 1 ≤ n) : ContDiffOn 𝕜 m (derivWithin f₂ s₂) s₂ := by
@@ -1978,26 +1978,26 @@ protected theorem ContDiffOn.derivWithin (hf : ContDiffOn 𝕜 n f₂ s₂) (hs
1978
1978
exact ((contDiffOn_succ_iff_derivWithin hs).1 (hf.of_le hmn)).2
1979
1979
#align cont_diff_on.deriv_within ContDiffOn.derivWithin
1980
1980
1981
- theorem ContDiffOn.deriv_of_open (hf : ContDiffOn 𝕜 n f₂ s₂) (hs : IsOpen s₂) (hmn : m + 1 ≤ n) :
1981
+ theorem ContDiffOn.deriv_of_isOpen (hf : ContDiffOn 𝕜 n f₂ s₂) (hs : IsOpen s₂) (hmn : m + 1 ≤ n) :
1982
1982
ContDiffOn 𝕜 m (deriv f₂) s₂ :=
1983
- (hf.derivWithin hs.uniqueDiffOn hmn).congr fun _ hx => (derivWithin_of_open hs hx).symm
1984
- #align cont_diff_on.deriv_of_open ContDiffOn.deriv_of_open
1983
+ (hf.derivWithin hs.uniqueDiffOn hmn).congr fun _ hx => (derivWithin_of_isOpen hs hx).symm
1984
+ #align cont_diff_on.deriv_of_open ContDiffOn.deriv_of_isOpen
1985
1985
1986
1986
theorem ContDiffOn.continuousOn_derivWithin (h : ContDiffOn 𝕜 n f₂ s₂) (hs : UniqueDiffOn 𝕜 s₂)
1987
1987
(hn : 1 ≤ n) : ContinuousOn (derivWithin f₂ s₂) s₂ :=
1988
1988
((contDiffOn_succ_iff_derivWithin hs).1 (h.of_le hn)).2 .continuousOn
1989
1989
#align cont_diff_on.continuous_on_deriv_within ContDiffOn.continuousOn_derivWithin
1990
1990
1991
- theorem ContDiffOn.continuousOn_deriv_of_open (h : ContDiffOn 𝕜 n f₂ s₂) (hs : IsOpen s₂)
1991
+ theorem ContDiffOn.continuousOn_deriv_of_isOpen (h : ContDiffOn 𝕜 n f₂ s₂) (hs : IsOpen s₂)
1992
1992
(hn : 1 ≤ n) : ContinuousOn (deriv f₂) s₂ :=
1993
- ((contDiffOn_succ_iff_deriv_of_open hs).1 (h.of_le hn)).2 .continuousOn
1994
- #align cont_diff_on.continuous_on_deriv_of_open ContDiffOn.continuousOn_deriv_of_open
1993
+ ((contDiffOn_succ_iff_deriv_of_isOpen hs).1 (h.of_le hn)).2 .continuousOn
1994
+ #align cont_diff_on.continuous_on_deriv_of_open ContDiffOn.continuousOn_deriv_of_isOpen
1995
1995
1996
1996
/-- A function is `C^(n + 1)` if and only if it is differentiable,
1997
1997
and its derivative (formulated in terms of `deriv`) is `C^n`. -/
1998
1998
theorem contDiff_succ_iff_deriv {n : ℕ} :
1999
1999
ContDiff 𝕜 (n + 1 : ℕ) f₂ ↔ Differentiable 𝕜 f₂ ∧ ContDiff 𝕜 n (deriv f₂) := by
2000
- simp only [← contDiffOn_univ, contDiffOn_succ_iff_deriv_of_open , isOpen_univ,
2000
+ simp only [← contDiffOn_univ, contDiffOn_succ_iff_deriv_of_isOpen , isOpen_univ,
2001
2001
differentiableOn_univ]
2002
2002
#align cont_diff_succ_iff_deriv contDiff_succ_iff_deriv
2003
2003
0 commit comments