@@ -202,30 +202,30 @@ protected def Icc : Box ι ↪o Set (ι → ℝ) :=
202
202
OrderEmbedding.ofMapLEIff (fun I : Box ι ↦ Icc I.lower I.upper) fun I J ↦ (le_TFAE I J).out 2 0
203
203
#align box_integral.box.Icc BoxIntegral.Box.Icc
204
204
205
- theorem icc_def : Box.Icc I = Icc I.lower I.upper := rfl
206
- #align box_integral.box.Icc_def BoxIntegral.Box.icc_def
205
+ theorem Icc_def : Box.Icc I = Icc I.lower I.upper := rfl
206
+ #align box_integral.box.Icc_def BoxIntegral.Box.Icc_def
207
207
208
208
@[simp]
209
- theorem upper_mem_icc (I : Box ι) : I.upper ∈ Box.Icc I :=
209
+ theorem upper_mem_Icc (I : Box ι) : I.upper ∈ Box.Icc I :=
210
210
right_mem_Icc.2 I.lower_le_upper
211
- #align box_integral.box.upper_mem_Icc BoxIntegral.Box.upper_mem_icc
211
+ #align box_integral.box.upper_mem_Icc BoxIntegral.Box.upper_mem_Icc
212
212
213
213
@[simp]
214
- theorem lower_mem_icc (I : Box ι) : I.lower ∈ Box.Icc I :=
214
+ theorem lower_mem_Icc (I : Box ι) : I.lower ∈ Box.Icc I :=
215
215
left_mem_Icc.2 I.lower_le_upper
216
- #align box_integral.box.lower_mem_Icc BoxIntegral.Box.lower_mem_icc
216
+ #align box_integral.box.lower_mem_Icc BoxIntegral.Box.lower_mem_Icc
217
217
218
- protected theorem isCompact_icc (I : Box ι) : IsCompact (Box.Icc I) :=
218
+ protected theorem isCompact_Icc (I : Box ι) : IsCompact (Box.Icc I) :=
219
219
isCompact_Icc
220
- #align box_integral.box.is_compact_Icc BoxIntegral.Box.isCompact_icc
220
+ #align box_integral.box.is_compact_Icc BoxIntegral.Box.isCompact_Icc
221
221
222
- theorem icc_eq_pi : Box.Icc I = pi univ fun i ↦ Icc (I.lower i) (I.upper i) :=
222
+ theorem Icc_eq_pi : Box.Icc I = pi univ fun i ↦ Icc (I.lower i) (I.upper i) :=
223
223
(pi_univ_Icc _ _).symm
224
- #align box_integral.box.Icc_eq_pi BoxIntegral.Box.icc_eq_pi
224
+ #align box_integral.box.Icc_eq_pi BoxIntegral.Box.Icc_eq_pi
225
225
226
- theorem le_iff_icc : I ≤ J ↔ Box.Icc I ⊆ Box.Icc J :=
226
+ theorem le_iff_Icc : I ≤ J ↔ Box.Icc I ⊆ Box.Icc J :=
227
227
(le_TFAE I J).out 0 2
228
- #align box_integral.box.le_iff_Icc BoxIntegral.Box.le_iff_icc
228
+ #align box_integral.box.le_iff_Icc BoxIntegral.Box.le_iff_Icc
229
229
230
230
theorem antitone_lower : Antitone fun I : Box ι ↦ I.lower :=
231
231
fun _ _ H ↦ (le_iff_bounds.1 H).1
@@ -235,9 +235,9 @@ theorem monotone_upper : Monotone fun I : Box ι ↦ I.upper :=
235
235
fun _ _ H ↦ (le_iff_bounds.1 H).2
236
236
#align box_integral.box.monotone_upper BoxIntegral.Box.monotone_upper
237
237
238
- theorem coe_subset_icc : ↑I ⊆ Box.Icc I :=
238
+ theorem coe_subset_Icc : ↑I ⊆ Box.Icc I :=
239
239
fun _ hx ↦ ⟨fun i ↦ (hx i).1 .le, fun i ↦ (hx i).2 ⟩
240
- #align box_integral.box.coe_subset_Icc BoxIntegral.Box.coe_subset_icc
240
+ #align box_integral.box.coe_subset_Icc BoxIntegral.Box.coe_subset_Icc
241
241
242
242
/-!
243
243
### Supremum of two boxes
@@ -290,10 +290,10 @@ theorem isSome_iff : ∀ {I : WithBot (Box ι)}, I.isSome ↔ (I : Set (ι →
290
290
simp [I.nonempty_coe]
291
291
#align box_integral.box.is_some_iff BoxIntegral.Box.isSome_iff
292
292
293
- theorem bUnion_coe_eq_coe (I : WithBot (Box ι)) :
293
+ theorem bunionᵢ_coe_eq_coe (I : WithBot (Box ι)) :
294
294
(⋃ (J : Box ι) (_hJ : ↑J = I), (J : Set (ι → ℝ))) = I := by
295
295
induction I using WithBot.recBotCoe <;> simp [WithBot.coe_eq_coe]
296
- #align box_integral.box.bUnion_coe_eq_coe BoxIntegral.Box.bUnion_coe_eq_coe
296
+ #align box_integral.box.bUnion_coe_eq_coe BoxIntegral.Box.bunionᵢ_coe_eq_coe
297
297
298
298
@[simp, norm_cast]
299
299
theorem withBotCoe_subset_iff {I J : WithBot (Box ι)} : (I : Set (ι → ℝ)) ⊆ J ↔ I ≤ J := by
@@ -345,10 +345,10 @@ instance WithBot.inf : Inf (WithBot (Box ι)) :=
345
345
346
346
@[simp]
347
347
theorem coe_inf (I J : WithBot (Box ι)) : (↑(I ⊓ J) : Set (ι → ℝ)) = (I : Set _) ∩ J := by
348
- induction I using WithBot.recBotCoe;
348
+ induction I using WithBot.recBotCoe
349
349
· change ∅ = _
350
350
simp
351
- induction J using WithBot.recBotCoe;
351
+ induction J using WithBot.recBotCoe
352
352
· change ∅ = _
353
353
simp
354
354
change ((mk' _ _ : WithBot (Box ι)) : Set (ι → ℝ)) = _
@@ -427,12 +427,12 @@ theorem mapsTo_insertNth_face {n} (I : Box (Fin (n + 1))) {i : Fin (n + 1)} {x :
427
427
exact ⟨hx, hy⟩
428
428
#align box_integral.box.maps_to_insert_nth_face BoxIntegral.Box.mapsTo_insertNth_face
429
429
430
- theorem continuousOn_face_icc {X} [TopologicalSpace X] {n} {f : (Fin (n + 1 ) → ℝ) → X}
430
+ theorem continuousOn_face_Icc {X} [TopologicalSpace X] {n} {f : (Fin (n + 1 ) → ℝ) → X}
431
431
{I : Box (Fin (n + 1 ))} (h : ContinuousOn f (Box.Icc I)) {i : Fin (n + 1 )} {x : ℝ}
432
432
(hx : x ∈ Icc (I.lower i) (I.upper i)) :
433
433
ContinuousOn (f ∘ i.insertNth x) (Box.Icc (I.face i)) :=
434
434
h.comp (continuousOn_const.fin_insertNth i continuousOn_id) (I.mapsTo_insertNth_face_Icc hx)
435
- #align box_integral.box.continuous_on_face_Icc BoxIntegral.Box.continuousOn_face_icc
435
+ #align box_integral.box.continuous_on_face_Icc BoxIntegral.Box.continuousOn_face_Icc
436
436
437
437
/-!
438
438
### Covering of the interior of a box by a monotone sequence of smaller boxes
@@ -446,15 +446,15 @@ protected def Ioo : Box ι →o Set (ι → ℝ) where
446
446
pi_mono fun i _ ↦ Ioo_subset_Ioo ((le_iff_bounds.1 h).1 i) ((le_iff_bounds.1 h).2 i)
447
447
#align box_integral.box.Ioo BoxIntegral.Box.Ioo
448
448
449
- theorem ioo_subset_coe (I : Box ι) : Box.Ioo I ⊆ I :=
449
+ theorem Ioo_subset_coe (I : Box ι) : Box.Ioo I ⊆ I :=
450
450
fun _ hx i ↦ Ioo_subset_Ioc_self (hx i trivial)
451
- #align box_integral.box.Ioo_subset_coe BoxIntegral.Box.ioo_subset_coe
451
+ #align box_integral.box.Ioo_subset_coe BoxIntegral.Box.Ioo_subset_coe
452
452
453
- protected theorem ioo_subset_icc (I : Box ι) : Box.Ioo I ⊆ Box.Icc I :=
454
- I.ioo_subset_coe .trans coe_subset_icc
455
- #align box_integral.box.Ioo_subset_Icc BoxIntegral.Box.ioo_subset_icc
453
+ protected theorem Ioo_subset_Icc (I : Box ι) : Box.Ioo I ⊆ Box.Icc I :=
454
+ I.Ioo_subset_coe .trans coe_subset_Icc
455
+ #align box_integral.box.Ioo_subset_Icc BoxIntegral.Box.Ioo_subset_Icc
456
456
457
- theorem unionᵢ_ioo_of_tendsto [Finite ι] {I : Box ι} {J : ℕ → Box ι} (hJ : Monotone J)
457
+ theorem unionᵢ_Ioo_of_tendsto [Finite ι] {I : Box ι} {J : ℕ → Box ι} (hJ : Monotone J)
458
458
(hl : Tendsto (lower ∘ J) atTop (𝓝 I.lower)) (hu : Tendsto (upper ∘ J) atTop (𝓝 I.upper)) :
459
459
(⋃ n, Box.Ioo (J n)) = Box.Ioo I :=
460
460
have hl' : ∀ i, Antitone fun n ↦ (J n).lower i :=
@@ -469,7 +469,7 @@ theorem unionᵢ_ioo_of_tendsto [Finite ι] {I : Box ι} {J : ℕ → Box ι} (h
469
469
unionᵢ_Ioo_of_mono_of_isGLB_of_isLUB (hl' i) (hu' i)
470
470
(isGLB_of_tendsto_atTop (hl' i) (tendsto_pi_nhds.1 hl _))
471
471
(isLUB_of_tendsto_atTop (hu' i) (tendsto_pi_nhds.1 hu _))
472
- #align box_integral.box.Union_Ioo_of_tendsto BoxIntegral.Box.unionᵢ_ioo_of_tendsto
472
+ #align box_integral.box.Union_Ioo_of_tendsto BoxIntegral.Box.unionᵢ_Ioo_of_tendsto
473
473
474
474
theorem exists_seq_mono_tendsto (I : Box ι) :
475
475
∃ J : ℕ →o Box ι,
@@ -527,7 +527,7 @@ theorem dist_le_distortion_mul (I : Box ι) (i : ι) :
527
527
neg_sub] using I.nndist_le_distortion_mul i
528
528
#align box_integral.box.dist_le_distortion_mul BoxIntegral.Box.dist_le_distortion_mul
529
529
530
- theorem diam_icc_le_of_distortion_le (I : Box ι) (i : ι) {c : ℝ≥0 } (h : I.distortion ≤ c) :
530
+ theorem diam_Icc_le_of_distortion_le (I : Box ι) (i : ι) {c : ℝ≥0 } (h : I.distortion ≤ c) :
531
531
diam (Box.Icc I) ≤ c * (I.upper i - I.lower i) :=
532
532
have : (0 : ℝ) ≤ c * (I.upper i - I.lower i) :=
533
533
mul_nonneg c.coe_nonneg (sub_nonneg.2 <| I.lower_le_upper _)
@@ -537,7 +537,7 @@ theorem diam_icc_le_of_distortion_le (I : Box ι) (i : ι) {c : ℝ≥0} (h : I.
537
537
_ ≤ I.distortion * (I.upper i - I.lower i) := (I.dist_le_distortion_mul i)
538
538
_ ≤ c * (I.upper i - I.lower i) :=
539
539
mul_le_mul_of_nonneg_right h (sub_nonneg.2 (I.lower_le_upper i))
540
- #align box_integral.box.diam_Icc_le_of_distortion_le BoxIntegral.Box.diam_icc_le_of_distortion_le
540
+ #align box_integral.box.diam_Icc_le_of_distortion_le BoxIntegral.Box.diam_Icc_le_of_distortion_le
541
541
542
542
end Distortion
543
543
0 commit comments