Skip to content

Commit 8cf71b0

Browse files
chore: tidy various files (#3530)
1 parent 66fc2fe commit 8cf71b0

File tree

26 files changed

+224
-288
lines changed

26 files changed

+224
-288
lines changed

Mathlib/Algebra/Algebra/Bilinear.lean

Lines changed: 6 additions & 9 deletions
Original file line numberDiff line numberDiff line change
@@ -22,9 +22,7 @@ in order to avoid importing `LinearAlgebra.BilinearMap` and
2222
-/
2323

2424

25-
open TensorProduct
26-
27-
open Module
25+
open TensorProduct Module
2826

2927
namespace LinearMap
3028

@@ -63,14 +61,14 @@ def mulLeftRight (ab : A × A) : A →ₗ[R] A :=
6361
#align linear_map.mul_left_right LinearMap.mulLeftRight
6462

6563
@[simp]
66-
theorem mulLeft_toAddMonoid_hom (a : A) : (mulLeft R a : A →+ A) = AddMonoidHom.mulLeft a :=
64+
theorem mulLeft_toAddMonoidHom (a : A) : (mulLeft R a : A →+ A) = AddMonoidHom.mulLeft a :=
6765
rfl
68-
#align linear_map.mul_left_to_add_monoid_hom LinearMap.mulLeft_toAddMonoid_hom
66+
#align linear_map.mul_left_to_add_monoid_hom LinearMap.mulLeft_toAddMonoidHom
6967

7068
@[simp]
71-
theorem mulRight_toAddMonoid_hom (a : A) : (mulRight R a : A →+ A) = AddMonoidHom.mulRight a :=
69+
theorem mulRight_toAddMonoidHom (a : A) : (mulRight R a : A →+ A) = AddMonoidHom.mulRight a :=
7270
rfl
73-
#align linear_map.mul_right_to_add_monoid_hom LinearMap.mulRight_toAddMonoid_hom
71+
#align linear_map.mul_right_to_add_monoid_hom LinearMap.mulRight_toAddMonoidHom
7472

7573
variable {R}
7674

@@ -165,8 +163,7 @@ the algebra.
165163
166164
A weaker version of this for non-unital algebras exists as `NonUnitalAlgHom.mul`. -/
167165
def Algebra.lmul : A →ₐ[R] End R A :=
168-
{ LinearMap.mul R
169-
A with
166+
{ LinearMap.mul R A with
170167
map_one' := by
171168
ext a
172169
exact one_mul a

Mathlib/Algebra/Algebra/Operations.lean

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -175,7 +175,7 @@ theorem mul_le : M * N ≤ P ↔ ∀ m ∈ M, ∀ n ∈ N, m * n ∈ P :=
175175
theorem mul_toAddSubmonoid (M N : Submodule R A) :
176176
(M * N).toAddSubmonoid = M.toAddSubmonoid * N.toAddSubmonoid := by
177177
dsimp [HMul.hMul, Mul.mul] --porting note: added `hMul`
178-
simp_rw [← LinearMap.mulLeft_toAddMonoid_hom R, LinearMap.mulLeft, ← map_toAddSubmonoid _ N,
178+
simp_rw [← LinearMap.mulLeft_toAddMonoidHom R, LinearMap.mulLeft, ← map_toAddSubmonoid _ N,
179179
map₂]
180180
rw [supᵢ_toAddSubmonoid]
181181
rfl

Mathlib/Algebra/Algebra/Pi.lean

Lines changed: 8 additions & 13 deletions
Original file line numberDiff line numberDiff line change
@@ -15,7 +15,7 @@ import Mathlib.Algebra.Algebra.Equiv
1515
1616
The R-algebra structure on `∀ i : I, A i` when each `A i` is an R-algebra.
1717
18-
## Main defintions
18+
## Main definitions
1919
2020
* `Pi.algebra`
2121
* `Pi.evalAlgHom`
@@ -27,25 +27,22 @@ universe u v w
2727

2828
namespace Pi
2929

30+
-- The indexing type
3031
variable {I : Type u}
3132

32-
-- The indexing type
33+
-- The scalar type
3334
variable {R : Type _}
3435

35-
-- The scalar type
36+
-- The family of types already equipped with instances
3637
variable {f : I → Type v}
3738

38-
-- The family of types already equipped with instances
3939
variable (x y : ∀ i, f i) (i : I)
4040

4141
variable (I f)
4242

4343
instance algebra {r : CommSemiring R} [s : ∀ i, Semiring (f i)] [∀ i, Algebra R (f i)] :
4444
Algebra R (∀ i : I, f i) :=
45-
{
46-
(Pi.ringHom fun i => algebraMap R (f i) :
47-
R →+* ∀ i : I,
48-
f i) with
45+
{ (Pi.ringHom fun i => algebraMap R (f i) : R →+* ∀ i : I, f i) with
4946
commutes' := fun a f => by ext; simp [Algebra.commutes]
5047
smul_def' := fun a f => by ext; simp [Algebra.smul_def] }
5148
#align pi.algebra Pi.algebra
@@ -77,7 +74,7 @@ def evalAlgHom {_ : CommSemiring R} [∀ i, Semiring (f i)] [∀ i, Algebra R (f
7774

7875
variable (A B : Type _) [CommSemiring R] [Semiring B] [Algebra R B]
7976

80-
/-- `Function.const` as an `AlgHom`. The name matches `Pi.constRingHhom`, `Pi.constMonoidHom`,
77+
/-- `Function.const` as an `AlgHom`. The name matches `Pi.constRingHom`, `Pi.constMonoidHom`,
8178
etc. -/
8279
@[simps]
8380
def constAlgHom : B →ₐ[R] A → B :=
@@ -133,16 +130,14 @@ namespace AlgEquiv
133130
/-- A family of algebra equivalences `∀ i, (A₁ i ≃ₐ A₂ i)` generates a
134131
multiplicative equivalence between `∀ i, A₁ i` and `∀ i, A₂ i`.
135132
136-
This is the `AlgEquiv` version of `Equiv.Pi_congrRight`, and the dependent version of
133+
This is the `AlgEquiv` version of `Equiv.piCongrRight`, and the dependent version of
137134
`AlgEquiv.arrowCongr`.
138135
-/
139136
@[simps apply]
140137
def piCongrRight {R ι : Type _} {A₁ A₂ : ι → Type _} [CommSemiring R] [∀ i, Semiring (A₁ i)]
141138
[∀ i, Semiring (A₂ i)] [∀ i, Algebra R (A₁ i)] [∀ i, Algebra R (A₂ i)]
142139
(e : ∀ i, A₁ i ≃ₐ[R] A₂ i) : (∀ i, A₁ i) ≃ₐ[R] ∀ i, A₂ i :=
143-
{
144-
@RingEquiv.piCongrRight ι A₁ A₂ _ _ fun i =>
145-
(e i).toRingEquiv with
140+
{ @RingEquiv.piCongrRight ι A₁ A₂ _ _ fun i => (e i).toRingEquiv with
146141
toFun := fun x j => e j (x j)
147142
invFun := fun x j => (e j).symm (x j)
148143
commutes' := fun r => by

Mathlib/Algebra/Algebra/Tower.lean

Lines changed: 6 additions & 6 deletions
Original file line numberDiff line numberDiff line change
@@ -131,8 +131,8 @@ theorem coe_toAlgHom : ↑(toAlgHom R S A) = algebraMap S A :=
131131
#align is_scalar_tower.coe_to_alg_hom IsScalarTower.coe_toAlgHom
132132

133133
@[simp]
134-
theorem coe_to_alg_hom' : (toAlgHom R S A : S → A) = algebraMap S A := rfl
135-
#align is_scalar_tower.coe_to_alg_hom' IsScalarTower.coe_to_alg_hom'
134+
theorem coe_toAlgHom' : (toAlgHom R S A : S → A) = algebraMap S A := rfl
135+
#align is_scalar_tower.coe_to_alg_hom' IsScalarTower.coe_toAlgHom'
136136

137137
variable {R S A B}
138138

@@ -198,8 +198,8 @@ theorem coe_restrictScalars (f : A →ₐ[S] B) : (f.restrictScalars R : A →+*
198198
#align alg_hom.coe_restrict_scalars AlgHom.coe_restrictScalars
199199

200200
@[simp]
201-
theorem coe_restrict_scalars' (f : A →ₐ[S] B) : (restrictScalars R f : A → B) = f := rfl
202-
#align alg_hom.coe_restrict_scalars' AlgHom.coe_restrict_scalars'
201+
theorem coe_restrictScalars' (f : A →ₐ[S] B) : (restrictScalars R f : A → B) = f := rfl
202+
#align alg_hom.coe_restrict_scalars' AlgHom.coe_restrictScalars'
203203

204204
theorem restrictScalars_injective :
205205
Function.Injective (restrictScalars R : (A →ₐ[S] B) → A →ₐ[R] B) := fun _ _ h =>
@@ -226,8 +226,8 @@ theorem coe_restrictScalars (f : A ≃ₐ[S] B) : (f.restrictScalars R : A ≃+*
226226
#align alg_equiv.coe_restrict_scalars AlgEquiv.coe_restrictScalars
227227

228228
@[simp]
229-
theorem coe_restrict_scalars' (f : A ≃ₐ[S] B) : (restrictScalars R f : A → B) = f := rfl
230-
#align alg_equiv.coe_restrict_scalars' AlgEquiv.coe_restrict_scalars'
229+
theorem coe_restrictScalars' (f : A ≃ₐ[S] B) : (restrictScalars R f : A → B) = f := rfl
230+
#align alg_equiv.coe_restrict_scalars' AlgEquiv.coe_restrictScalars'
231231

232232
theorem restrictScalars_injective :
233233
Function.Injective (restrictScalars R : (A ≃ₐ[S] B) → A ≃ₐ[R] B) := fun _ _ h =>

Mathlib/Algebra/Module/Submodule/Basic.lean

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -409,9 +409,9 @@ variable {α β : Type _}
409409
instance [VAdd M α] : VAdd p α :=
410410
p.toAddSubmonoid.vadd
411411

412-
instance vAddCommClass [VAdd M β] [VAdd α β] [VAddCommClass M α β] : VAddCommClass p α β :=
412+
instance vaddCommClass [VAdd M β] [VAdd α β] [VAddCommClass M α β] : VAddCommClass p α β :=
413413
fun a => (vadd_comm (a : M) : _)⟩
414-
#align submodule.vadd_comm_class Submodule.vAddCommClass
414+
#align submodule.vadd_comm_class Submodule.vaddCommClass
415415

416416
instance [VAdd M α] [FaithfulVAdd M α] : FaithfulVAdd p α :=
417417
fun h => Subtype.ext <| eq_of_vadd_eq_vadd h⟩

Mathlib/AlgebraicTopology/SimplexCategory.lean

Lines changed: 3 additions & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -94,14 +94,14 @@ protected def rec {F : ∀ _ : SimplexCategory, Sort _} (h : ∀ n : ℕ, F [n])
9494
#align simplex_category.rec SimplexCategory.rec
9595

9696
-- porting note: removed @[nolint has_nonempty_instance]
97-
/-- Morphisms in the simplex_category. -/
97+
/-- Morphisms in the `SimplexCategory`. -/
9898
protected def Hom (a b : SimplexCategory) :=
9999
Fin (a.len + 1) →o Fin (b.len + 1)
100100
#align simplex_category.hom SimplexCategory.Hom
101101

102102
namespace Hom
103103

104-
/-- Make a moprhism in `SimplexCategory` from a monotone map of fin's. -/
104+
/-- Make a moprhism in `SimplexCategory` from a monotone map of `Fin`'s. -/
105105
def mk {a b : SimplexCategory} (f : Fin (a.len + 1) →o Fin (b.len + 1)) : SimplexCategory.Hom a b :=
106106
f
107107
#align simplex_category.hom.mk SimplexCategory.Hom.mk
@@ -640,7 +640,7 @@ theorem eq_σ_comp_of_not_injective {n : ℕ} {Δ' : SimplexCategory} (θ : mk (
640640
-- and then, `θ x = θ (x+1)`
641641
have hθ₂ : ∃ x y : Fin (n + 2), (Hom.toOrderHom θ) x = (Hom.toOrderHom θ) y ∧ x < y := by
642642
rcases hθ with ⟨x, y, ⟨h₁, h₂⟩⟩
643-
by_cases x < y
643+
by_cases h : x < y
644644
· exact ⟨x, y, ⟨h₁, h⟩⟩
645645
· refine' ⟨y, x, ⟨h₁.symm, _⟩⟩
646646
cases' lt_or_eq_of_le (not_lt.mp h) with h' h'

Mathlib/Analysis/BoxIntegral/Box/Basic.lean

Lines changed: 29 additions & 29 deletions
Original file line numberDiff line numberDiff line change
@@ -202,30 +202,30 @@ protected def Icc : Box ι ↪o Set (ι → ℝ) :=
202202
OrderEmbedding.ofMapLEIff (fun I : Box ι ↦ Icc I.lower I.upper) fun I J ↦ (le_TFAE I J).out 2 0
203203
#align box_integral.box.Icc BoxIntegral.Box.Icc
204204

205-
theorem icc_def : Box.Icc I = Icc I.lower I.upper := rfl
206-
#align box_integral.box.Icc_def BoxIntegral.Box.icc_def
205+
theorem Icc_def : Box.Icc I = Icc I.lower I.upper := rfl
206+
#align box_integral.box.Icc_def BoxIntegral.Box.Icc_def
207207

208208
@[simp]
209-
theorem upper_mem_icc (I : Box ι) : I.upper ∈ Box.Icc I :=
209+
theorem upper_mem_Icc (I : Box ι) : I.upper ∈ Box.Icc I :=
210210
right_mem_Icc.2 I.lower_le_upper
211-
#align box_integral.box.upper_mem_Icc BoxIntegral.Box.upper_mem_icc
211+
#align box_integral.box.upper_mem_Icc BoxIntegral.Box.upper_mem_Icc
212212

213213
@[simp]
214-
theorem lower_mem_icc (I : Box ι) : I.lower ∈ Box.Icc I :=
214+
theorem lower_mem_Icc (I : Box ι) : I.lower ∈ Box.Icc I :=
215215
left_mem_Icc.2 I.lower_le_upper
216-
#align box_integral.box.lower_mem_Icc BoxIntegral.Box.lower_mem_icc
216+
#align box_integral.box.lower_mem_Icc BoxIntegral.Box.lower_mem_Icc
217217

218-
protected theorem isCompact_icc (I : Box ι) : IsCompact (Box.Icc I) :=
218+
protected theorem isCompact_Icc (I : Box ι) : IsCompact (Box.Icc I) :=
219219
isCompact_Icc
220-
#align box_integral.box.is_compact_Icc BoxIntegral.Box.isCompact_icc
220+
#align box_integral.box.is_compact_Icc BoxIntegral.Box.isCompact_Icc
221221

222-
theorem icc_eq_pi : Box.Icc I = pi univ fun i ↦ Icc (I.lower i) (I.upper i) :=
222+
theorem Icc_eq_pi : Box.Icc I = pi univ fun i ↦ Icc (I.lower i) (I.upper i) :=
223223
(pi_univ_Icc _ _).symm
224-
#align box_integral.box.Icc_eq_pi BoxIntegral.Box.icc_eq_pi
224+
#align box_integral.box.Icc_eq_pi BoxIntegral.Box.Icc_eq_pi
225225

226-
theorem le_iff_icc : I ≤ J ↔ Box.Icc I ⊆ Box.Icc J :=
226+
theorem le_iff_Icc : I ≤ J ↔ Box.Icc I ⊆ Box.Icc J :=
227227
(le_TFAE I J).out 0 2
228-
#align box_integral.box.le_iff_Icc BoxIntegral.Box.le_iff_icc
228+
#align box_integral.box.le_iff_Icc BoxIntegral.Box.le_iff_Icc
229229

230230
theorem antitone_lower : Antitone fun I : Box ι ↦ I.lower :=
231231
fun _ _ H ↦ (le_iff_bounds.1 H).1
@@ -235,9 +235,9 @@ theorem monotone_upper : Monotone fun I : Box ι ↦ I.upper :=
235235
fun _ _ H ↦ (le_iff_bounds.1 H).2
236236
#align box_integral.box.monotone_upper BoxIntegral.Box.monotone_upper
237237

238-
theorem coe_subset_icc : ↑I ⊆ Box.Icc I :=
238+
theorem coe_subset_Icc : ↑I ⊆ Box.Icc I :=
239239
fun _ hx ↦ ⟨fun i ↦ (hx i).1.le, fun i ↦ (hx i).2
240-
#align box_integral.box.coe_subset_Icc BoxIntegral.Box.coe_subset_icc
240+
#align box_integral.box.coe_subset_Icc BoxIntegral.Box.coe_subset_Icc
241241

242242
/-!
243243
### Supremum of two boxes
@@ -290,10 +290,10 @@ theorem isSome_iff : ∀ {I : WithBot (Box ι)}, I.isSome ↔ (I : Set (ι →
290290
simp [I.nonempty_coe]
291291
#align box_integral.box.is_some_iff BoxIntegral.Box.isSome_iff
292292

293-
theorem bUnion_coe_eq_coe (I : WithBot (Box ι)) :
293+
theorem bunionᵢ_coe_eq_coe (I : WithBot (Box ι)) :
294294
(⋃ (J : Box ι) (_hJ : ↑J = I), (J : Set (ι → ℝ))) = I := by
295295
induction I using WithBot.recBotCoe <;> simp [WithBot.coe_eq_coe]
296-
#align box_integral.box.bUnion_coe_eq_coe BoxIntegral.Box.bUnion_coe_eq_coe
296+
#align box_integral.box.bUnion_coe_eq_coe BoxIntegral.Box.bunionᵢ_coe_eq_coe
297297

298298
@[simp, norm_cast]
299299
theorem withBotCoe_subset_iff {I J : WithBot (Box ι)} : (I : Set (ι → ℝ)) ⊆ J ↔ I ≤ J := by
@@ -345,10 +345,10 @@ instance WithBot.inf : Inf (WithBot (Box ι)) :=
345345

346346
@[simp]
347347
theorem coe_inf (I J : WithBot (Box ι)) : (↑(I ⊓ J) : Set (ι → ℝ)) = (I : Set _) ∩ J := by
348-
induction I using WithBot.recBotCoe;
348+
induction I using WithBot.recBotCoe
349349
· change ∅ = _
350350
simp
351-
induction J using WithBot.recBotCoe;
351+
induction J using WithBot.recBotCoe
352352
· change ∅ = _
353353
simp
354354
change ((mk' _ _ : WithBot (Box ι)) : Set (ι → ℝ)) = _
@@ -427,12 +427,12 @@ theorem mapsTo_insertNth_face {n} (I : Box (Fin (n + 1))) {i : Fin (n + 1)} {x :
427427
exact ⟨hx, hy⟩
428428
#align box_integral.box.maps_to_insert_nth_face BoxIntegral.Box.mapsTo_insertNth_face
429429

430-
theorem continuousOn_face_icc {X} [TopologicalSpace X] {n} {f : (Fin (n + 1) → ℝ) → X}
430+
theorem continuousOn_face_Icc {X} [TopologicalSpace X] {n} {f : (Fin (n + 1) → ℝ) → X}
431431
{I : Box (Fin (n + 1))} (h : ContinuousOn f (Box.Icc I)) {i : Fin (n + 1)} {x : ℝ}
432432
(hx : x ∈ Icc (I.lower i) (I.upper i)) :
433433
ContinuousOn (f ∘ i.insertNth x) (Box.Icc (I.face i)) :=
434434
h.comp (continuousOn_const.fin_insertNth i continuousOn_id) (I.mapsTo_insertNth_face_Icc hx)
435-
#align box_integral.box.continuous_on_face_Icc BoxIntegral.Box.continuousOn_face_icc
435+
#align box_integral.box.continuous_on_face_Icc BoxIntegral.Box.continuousOn_face_Icc
436436

437437
/-!
438438
### Covering of the interior of a box by a monotone sequence of smaller boxes
@@ -446,15 +446,15 @@ protected def Ioo : Box ι →o Set (ι → ℝ) where
446446
pi_mono fun i _ ↦ Ioo_subset_Ioo ((le_iff_bounds.1 h).1 i) ((le_iff_bounds.1 h).2 i)
447447
#align box_integral.box.Ioo BoxIntegral.Box.Ioo
448448

449-
theorem ioo_subset_coe (I : Box ι) : Box.Ioo I ⊆ I :=
449+
theorem Ioo_subset_coe (I : Box ι) : Box.Ioo I ⊆ I :=
450450
fun _ hx i ↦ Ioo_subset_Ioc_self (hx i trivial)
451-
#align box_integral.box.Ioo_subset_coe BoxIntegral.Box.ioo_subset_coe
451+
#align box_integral.box.Ioo_subset_coe BoxIntegral.Box.Ioo_subset_coe
452452

453-
protected theorem ioo_subset_icc (I : Box ι) : Box.Ioo I ⊆ Box.Icc I :=
454-
I.ioo_subset_coe.trans coe_subset_icc
455-
#align box_integral.box.Ioo_subset_Icc BoxIntegral.Box.ioo_subset_icc
453+
protected theorem Ioo_subset_Icc (I : Box ι) : Box.Ioo I ⊆ Box.Icc I :=
454+
I.Ioo_subset_coe.trans coe_subset_Icc
455+
#align box_integral.box.Ioo_subset_Icc BoxIntegral.Box.Ioo_subset_Icc
456456

457-
theorem unionᵢ_ioo_of_tendsto [Finite ι] {I : Box ι} {J : ℕ → Box ι} (hJ : Monotone J)
457+
theorem unionᵢ_Ioo_of_tendsto [Finite ι] {I : Box ι} {J : ℕ → Box ι} (hJ : Monotone J)
458458
(hl : Tendsto (lower ∘ J) atTop (𝓝 I.lower)) (hu : Tendsto (upper ∘ J) atTop (𝓝 I.upper)) :
459459
(⋃ n, Box.Ioo (J n)) = Box.Ioo I :=
460460
have hl' : ∀ i, Antitone fun n ↦ (J n).lower i :=
@@ -469,7 +469,7 @@ theorem unionᵢ_ioo_of_tendsto [Finite ι] {I : Box ι} {J : ℕ → Box ι} (h
469469
unionᵢ_Ioo_of_mono_of_isGLB_of_isLUB (hl' i) (hu' i)
470470
(isGLB_of_tendsto_atTop (hl' i) (tendsto_pi_nhds.1 hl _))
471471
(isLUB_of_tendsto_atTop (hu' i) (tendsto_pi_nhds.1 hu _))
472-
#align box_integral.box.Union_Ioo_of_tendsto BoxIntegral.Box.unionᵢ_ioo_of_tendsto
472+
#align box_integral.box.Union_Ioo_of_tendsto BoxIntegral.Box.unionᵢ_Ioo_of_tendsto
473473

474474
theorem exists_seq_mono_tendsto (I : Box ι) :
475475
∃ J : ℕ →o Box ι,
@@ -527,7 +527,7 @@ theorem dist_le_distortion_mul (I : Box ι) (i : ι) :
527527
neg_sub] using I.nndist_le_distortion_mul i
528528
#align box_integral.box.dist_le_distortion_mul BoxIntegral.Box.dist_le_distortion_mul
529529

530-
theorem diam_icc_le_of_distortion_le (I : Box ι) (i : ι) {c : ℝ≥0} (h : I.distortion ≤ c) :
530+
theorem diam_Icc_le_of_distortion_le (I : Box ι) (i : ι) {c : ℝ≥0} (h : I.distortion ≤ c) :
531531
diam (Box.Icc I) ≤ c * (I.upper i - I.lower i) :=
532532
have : (0 : ℝ) ≤ c * (I.upper i - I.lower i) :=
533533
mul_nonneg c.coe_nonneg (sub_nonneg.2 <| I.lower_le_upper _)
@@ -537,7 +537,7 @@ theorem diam_icc_le_of_distortion_le (I : Box ι) (i : ι) {c : ℝ≥0} (h : I.
537537
_ ≤ I.distortion * (I.upper i - I.lower i) := (I.dist_le_distortion_mul i)
538538
_ ≤ c * (I.upper i - I.lower i) :=
539539
mul_le_mul_of_nonneg_right h (sub_nonneg.2 (I.lower_le_upper i))
540-
#align box_integral.box.diam_Icc_le_of_distortion_le BoxIntegral.Box.diam_icc_le_of_distortion_le
540+
#align box_integral.box.diam_Icc_le_of_distortion_le BoxIntegral.Box.diam_Icc_le_of_distortion_le
541541

542542
end Distortion
543543

Mathlib/Analysis/BoxIntegral/Box/SubboxInduction.lean

Lines changed: 7 additions & 9 deletions
Original file line numberDiff line numberDiff line change
@@ -32,9 +32,7 @@ rectangular box, induction
3232
-/
3333

3434

35-
open Set Finset Function Filter Metric
36-
37-
open Classical Topology Filter ENNReal
35+
open Set Finset Function Filter Metric Classical Topology Filter ENNReal
3836

3937
noncomputable section
4038

@@ -157,8 +155,8 @@ theorem subbox_induction_on' {p : Box ι → Prop} (I : Box ι)
157155
have hzJ : ∀ m, z ∈ Box.Icc (J m) :=
158156
mem_interᵢ.1 (csupᵢ_mem_Inter_Icc_of_antitone_Icc
159157
((@Box.Icc ι).monotone.comp_antitone hJmono) fun m ↦ (J m).lower_le_upper)
160-
have hJl_mem : ∀ m, (J m).lower ∈ Box.Icc I := fun m ↦ le_iff_icc.1 (hJle m) (J m).lower_mem_icc
161-
have hJu_mem : ∀ m, (J m).upper ∈ Box.Icc I := fun m ↦ le_iff_icc.1 (hJle m) (J m).upper_mem_icc
158+
have hJl_mem : ∀ m, (J m).lower ∈ Box.Icc I := fun m ↦ le_iff_Icc.1 (hJle m) (J m).lower_mem_Icc
159+
have hJu_mem : ∀ m, (J m).upper ∈ Box.Icc I := fun m ↦ le_iff_Icc.1 (hJle m) (J m).upper_mem_Icc
162160
have hJlz : Tendsto (fun m ↦ (J m).lower) atTop (𝓝 z) :=
163161
tendsto_atTop_csupᵢ (antitone_lower.comp hJmono) ⟨I.upper, fun x ⟨m, hm⟩ ↦ hm ▸ (hJl_mem m).2
164162
have hJuz : Tendsto (fun m ↦ (J m).upper) atTop (𝓝 z) := by
@@ -167,11 +165,11 @@ theorem subbox_induction_on' {p : Box ι → Prop} (I : Box ι)
167165
simpa [hJsub] using
168166
tendsto_const_nhds.div_atTop (tendsto_pow_atTop_atTop_of_one_lt _root_.one_lt_two)
169167
replace hJlz : Tendsto (fun m ↦ (J m).lower) atTop (𝓝[Icc I.lower I.upper] z)
170-
exact
171-
tendsto_nhdsWithin_of_tendsto_nhds_of_eventually_within _ hJlz (eventually_of_forall hJl_mem)
168+
· exact
169+
tendsto_nhdsWithin_of_tendsto_nhds_of_eventually_within _ hJlz (eventually_of_forall hJl_mem)
172170
replace hJuz : Tendsto (fun m ↦ (J m).upper) atTop (𝓝[Icc I.lower I.upper] z)
173-
exact
174-
tendsto_nhdsWithin_of_tendsto_nhds_of_eventually_within _ hJuz (eventually_of_forall hJu_mem)
171+
· exact
172+
tendsto_nhdsWithin_of_tendsto_nhds_of_eventually_within _ hJuz (eventually_of_forall hJu_mem)
175173
rcases H_nhds z (h0 ▸ hzJ 0) with ⟨U, hUz, hU⟩
176174
rcases(tendsto_lift'.1 (hJlz.Icc hJuz) U hUz).exists with ⟨m, hUm⟩
177175
exact hJp m (hU (J m) (hJle m) m (hzJ m) hUm (hJsub m))

Mathlib/Analysis/NormedSpace/ContinuousLinearMap.lean

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -61,7 +61,7 @@ def LinearMap.mkContinuous (C : ℝ) (h : ∀ x, ‖f x‖ ≤ C * ‖x‖) : E
6161

6262
/-- Reinterpret a linear map `𝕜 →ₗ[𝕜] E` as a continuous linear map. This construction
6363
is generalized to the case of any finite dimensional domain
64-
in `linear_map.to_continuous_linear_map`. -/
64+
in `LinearMap.toContinuousLinearMap`. -/
6565
def LinearMap.toContinuousLinearMap₁ (f : 𝕜 →ₗ[𝕜] E) : 𝕜 →L[𝕜] E :=
6666
f.mkContinuous ‖f 1fun x =>
6767
le_of_eq <| by
@@ -71,7 +71,7 @@ def LinearMap.toContinuousLinearMap₁ (f : 𝕜 →ₗ[𝕜] E) : 𝕜 →L[
7171

7272
/-- Construct a continuous linear map from a linear map and the existence of a bound on this linear
7373
map. If you have an explicit bound, use `LinearMap.mkContinuous` instead, as a norm estimate will
74-
follow automatically in `linear_map.mk_continuous_norm_le`. -/
74+
follow automatically in `LinearMap.mkContinuous_norm_le`. -/
7575
def LinearMap.mkContinuousOfExistsBound (h : ∃ C, ∀ x, ‖f x‖ ≤ C * ‖x‖) : E →SL[σ] F :=
7676
⟨f,
7777
let ⟨C, hC⟩ := h

0 commit comments

Comments
 (0)