Skip to content

Commit 8d09169

Browse files
committed
chore(BorelSpace): make MeasurableSpace arguments implicit (#17819)
... rather than instance arguments. This is motivated by non-canonical sigma-algebras showing up in the theory of Gibbs measures. From GibbsMeasure
1 parent 15a391f commit 8d09169

File tree

3 files changed

+55
-56
lines changed

3 files changed

+55
-56
lines changed

Mathlib/MeasureTheory/Constructions/BorelSpace/Order.lean

Lines changed: 9 additions & 9 deletions
Original file line numberDiff line numberDiff line change
@@ -94,8 +94,8 @@ end OrderTopology
9494

9595
section Orders
9696

97-
variable [TopologicalSpace α] [MeasurableSpace α] [OpensMeasurableSpace α]
98-
variable [MeasurableSpace δ]
97+
variable [TopologicalSpace α] {mα : MeasurableSpace α} [OpensMeasurableSpace α]
98+
variable {mδ : MeasurableSpace δ}
9999

100100
section Preorder
101101

@@ -473,7 +473,7 @@ end LinearOrder
473473

474474
section Lattice
475475

476-
variable [TopologicalSpace γ] [MeasurableSpace γ] [BorelSpace γ]
476+
variable [TopologicalSpace γ] {mγ : MeasurableSpace γ} [BorelSpace γ]
477477

478478
instance (priority := 100) ContinuousSup.measurableSup [Sup γ] [ContinuousSup γ] :
479479
MeasurableSup γ where
@@ -499,9 +499,9 @@ end Orders
499499

500500
section BorelSpace
501501

502-
variable [TopologicalSpace α] [MeasurableSpace α] [BorelSpace α]
503-
variable [TopologicalSpace β] [MeasurableSpace β] [BorelSpace β]
504-
variable [MeasurableSpace δ]
502+
variable [TopologicalSpace α] {mα : MeasurableSpace α} [BorelSpace α]
503+
variable [TopologicalSpace β] {mβ : MeasurableSpace β} [BorelSpace β]
504+
variable {mδ : MeasurableSpace δ}
505505

506506
section LinearOrder
507507

@@ -721,7 +721,7 @@ end LinearOrder
721721
section ConditionallyCompleteLattice
722722

723723
@[measurability]
724-
theorem Measurable.iSup_Prop {α} [MeasurableSpace α] [ConditionallyCompleteLattice α]
724+
theorem Measurable.iSup_Prop {α} {mα : MeasurableSpace α} [ConditionallyCompleteLattice α]
725725
(p : Prop) {f : δ → α} (hf : Measurable f) : Measurable fun b => ⨆ _ : p, f b := by
726726
classical
727727
simp_rw [ciSup_eq_ite]
@@ -730,7 +730,7 @@ theorem Measurable.iSup_Prop {α} [MeasurableSpace α] [ConditionallyCompleteLat
730730
· exact measurable_const
731731

732732
@[measurability]
733-
theorem Measurable.iInf_Prop {α} [MeasurableSpace α] [ConditionallyCompleteLattice α]
733+
theorem Measurable.iInf_Prop {α} {mα : MeasurableSpace α} [ConditionallyCompleteLattice α]
734734
(p : Prop) {f : δ → α} (hf : Measurable f) : Measurable fun b => ⨅ _ : p, f b := by
735735
classical
736736
simp_rw [ciInf_eq_ite]
@@ -923,7 +923,7 @@ section ENNReal
923923
/-- One can cut out `ℝ≥0∞` into the sets `{0}`, `Ico (t^n) (t^(n+1))` for `n : ℤ` and `{∞}`. This
924924
gives a way to compute the measure of a set in terms of sets on which a given function `f` does not
925925
fluctuate by more than `t`. -/
926-
theorem measure_eq_measure_preimage_add_measure_tsum_Ico_zpow {α : Type*} [MeasurableSpace α]
926+
theorem measure_eq_measure_preimage_add_measure_tsum_Ico_zpow {α : Type*} {mα : MeasurableSpace α}
927927
(μ : Measure α) {f : α → ℝ≥0∞} (hf : Measurable f) {s : Set α} (hs : MeasurableSet s)
928928
{t : ℝ≥0} (ht : 1 < t) :
929929
μ s =

Mathlib/MeasureTheory/Constructions/BorelSpace/Real.lean

Lines changed: 7 additions & 8 deletions
Original file line numberDiff line numberDiff line change
@@ -130,7 +130,7 @@ theorem measure_ext_Ioo_rat {μ ν : Measure ℝ} [IsLocallyFiniteMeasure μ]
130130

131131
end Real
132132

133-
variable [MeasurableSpace α]
133+
variable {mα : MeasurableSpace α}
134134

135135
@[measurability, fun_prop]
136136
theorem measurable_real_toNNReal : Measurable Real.toNNReal :=
@@ -217,15 +217,15 @@ def ennrealEquivSum : ℝ≥0∞ ≃ᵐ ℝ≥0 ⊕ Unit :=
217217

218218
open Function (uncurry)
219219

220-
theorem measurable_of_measurable_nnreal_prod [MeasurableSpace β] [MeasurableSpace γ]
220+
theorem measurable_of_measurable_nnreal_prod {_ : MeasurableSpace β} {_ : MeasurableSpace γ}
221221
{f : ℝ≥0∞ × β → γ} (H₁ : Measurable fun p : ℝ≥0 × β => f (p.1, p.2))
222222
(H₂ : Measurable fun x => f (∞, x)) : Measurable f :=
223223
let e : ℝ≥0∞ × β ≃ᵐ (ℝ≥0 × β) ⊕ (Unit × β) :=
224224
(ennrealEquivSum.prodCongr (MeasurableEquiv.refl β)).trans
225225
(MeasurableEquiv.sumProdDistrib _ _ _)
226226
e.symm.measurable_comp_iff.1 <| measurable_sum H₁ (H₂.comp measurable_id.snd)
227227

228-
theorem measurable_of_measurable_nnreal_nnreal [MeasurableSpace β] {f : ℝ≥0∞ × ℝ≥0∞ → β}
228+
theorem measurable_of_measurable_nnreal_nnreal {_ : MeasurableSpace β} {f : ℝ≥0∞ × ℝ≥0∞ → β}
229229
(h₁ : Measurable fun p : ℝ≥0 × ℝ≥0 => f (p.1, p.2)) (h₂ : Measurable fun r : ℝ≥0 => f (∞, r))
230230
(h₃ : Measurable fun r : ℝ≥0 => f (r, ∞)) : Measurable f :=
231231
measurable_of_measurable_nnreal_prod
@@ -382,8 +382,8 @@ theorem AEMeasurable.ennreal_tsum {ι} [Countable ι] {f : ι → α → ℝ≥0
382382
exact fun s => Finset.aemeasurable_sum s fun i _ => h i
383383

384384
@[measurability, fun_prop]
385-
theorem AEMeasurable.nnreal_tsum {α : Type*} [MeasurableSpace α] {ι : Type*} [Countable ι]
386-
{f : ι → α → NNReal} {μ : MeasureTheory.Measure α} (h : ∀ i : ι, AEMeasurable (f i) μ) :
385+
theorem AEMeasurable.nnreal_tsum {α : Type*} {_ : MeasurableSpace α} {ι : Type*} [Countable ι]
386+
{f : ι → α → NNReal} {μ : Measure α} (h : ∀ i : ι, AEMeasurable (f i) μ) :
387387
AEMeasurable (fun x : α => ∑' i : ι, f i x) μ := by
388388
simp_rw [NNReal.tsum_eq_toNNReal_tsum]
389389
exact (AEMeasurable.ennreal_tsum fun i => (h i).coe_nnreal_ennreal).ennreal_toNNReal
@@ -470,9 +470,8 @@ end NNReal
470470
spanning measurable sets with finite measure on which `f` is bounded.
471471
See also `StronglyMeasurable.exists_spanning_measurableSet_norm_le` for functions into normed
472472
groups. -/
473-
-- We redeclare `α` to temporarily avoid the `[MeasurableSpace α]` instance.
474-
theorem exists_spanning_measurableSet_le {α : Type*} {m : MeasurableSpace α} {f : α → ℝ≥0}
475-
(hf : Measurable f) (μ : Measure α) [SigmaFinite μ] :
473+
theorem exists_spanning_measurableSet_le {f : α → ℝ≥0} (hf : Measurable f) (μ : Measure α)
474+
[SigmaFinite μ] :
476475
∃ s : ℕ → Set α,
477476
(∀ n, MeasurableSet (s n) ∧ μ (s n) < ∞ ∧ ∀ x ∈ s n, f x ≤ n) ∧
478477
⋃ i, s i = Set.univ := by

0 commit comments

Comments
 (0)