@@ -130,7 +130,7 @@ theorem measure_ext_Ioo_rat {μ ν : Measure ℝ} [IsLocallyFiniteMeasure μ]
130
130
131
131
end Real
132
132
133
- variable [ MeasurableSpace α]
133
+ variable {mα : MeasurableSpace α}
134
134
135
135
@[measurability, fun_prop]
136
136
theorem measurable_real_toNNReal : Measurable Real.toNNReal :=
@@ -217,15 +217,15 @@ def ennrealEquivSum : ℝ≥0∞ ≃ᵐ ℝ≥0 ⊕ Unit :=
217
217
218
218
open Function (uncurry)
219
219
220
- theorem measurable_of_measurable_nnreal_prod [ MeasurableSpace β] [ MeasurableSpace γ]
220
+ theorem measurable_of_measurable_nnreal_prod {_ : MeasurableSpace β} {_ : MeasurableSpace γ}
221
221
{f : ℝ≥0 ∞ × β → γ} (H₁ : Measurable fun p : ℝ≥0 × β => f (p.1 , p.2 ))
222
222
(H₂ : Measurable fun x => f (∞, x)) : Measurable f :=
223
223
let e : ℝ≥0 ∞ × β ≃ᵐ (ℝ≥0 × β) ⊕ (Unit × β) :=
224
224
(ennrealEquivSum.prodCongr (MeasurableEquiv.refl β)).trans
225
225
(MeasurableEquiv.sumProdDistrib _ _ _)
226
226
e.symm.measurable_comp_iff.1 <| measurable_sum H₁ (H₂.comp measurable_id.snd)
227
227
228
- theorem measurable_of_measurable_nnreal_nnreal [ MeasurableSpace β] {f : ℝ≥0 ∞ × ℝ≥0 ∞ → β}
228
+ theorem measurable_of_measurable_nnreal_nnreal {_ : MeasurableSpace β} {f : ℝ≥0 ∞ × ℝ≥0 ∞ → β}
229
229
(h₁ : Measurable fun p : ℝ≥0 × ℝ≥0 => f (p.1 , p.2 )) (h₂ : Measurable fun r : ℝ≥0 => f (∞, r))
230
230
(h₃ : Measurable fun r : ℝ≥0 => f (r, ∞)) : Measurable f :=
231
231
measurable_of_measurable_nnreal_prod
@@ -382,8 +382,8 @@ theorem AEMeasurable.ennreal_tsum {ι} [Countable ι] {f : ι → α → ℝ≥0
382
382
exact fun s => Finset.aemeasurable_sum s fun i _ => h i
383
383
384
384
@[measurability, fun_prop]
385
- theorem AEMeasurable.nnreal_tsum {α : Type *} [ MeasurableSpace α] {ι : Type *} [Countable ι]
386
- {f : ι → α → NNReal} {μ : MeasureTheory. Measure α} (h : ∀ i : ι, AEMeasurable (f i) μ) :
385
+ theorem AEMeasurable.nnreal_tsum {α : Type *} {_ : MeasurableSpace α} {ι : Type *} [Countable ι]
386
+ {f : ι → α → NNReal} {μ : Measure α} (h : ∀ i : ι, AEMeasurable (f i) μ) :
387
387
AEMeasurable (fun x : α => ∑' i : ι, f i x) μ := by
388
388
simp_rw [NNReal.tsum_eq_toNNReal_tsum]
389
389
exact (AEMeasurable.ennreal_tsum fun i => (h i).coe_nnreal_ennreal).ennreal_toNNReal
@@ -470,9 +470,8 @@ end NNReal
470
470
spanning measurable sets with finite measure on which `f` is bounded.
471
471
See also `StronglyMeasurable.exists_spanning_measurableSet_norm_le` for functions into normed
472
472
groups. -/
473
- -- We redeclare `α` to temporarily avoid the `[MeasurableSpace α]` instance.
474
- theorem exists_spanning_measurableSet_le {α : Type *} {m : MeasurableSpace α} {f : α → ℝ≥0 }
475
- (hf : Measurable f) (μ : Measure α) [SigmaFinite μ] :
473
+ theorem exists_spanning_measurableSet_le {f : α → ℝ≥0 } (hf : Measurable f) (μ : Measure α)
474
+ [SigmaFinite μ] :
476
475
∃ s : ℕ → Set α,
477
476
(∀ n, MeasurableSet (s n) ∧ μ (s n) < ∞ ∧ ∀ x ∈ s n, f x ≤ n) ∧
478
477
⋃ i, s i = Set.univ := by
0 commit comments