Skip to content

Commit 8dbcc1d

Browse files
committed
chore: fix lift_fun -> liftFun in lemma names (#4873)
1 parent 3b8ea35 commit 8dbcc1d

File tree

3 files changed

+17
-17
lines changed

3 files changed

+17
-17
lines changed

Mathlib/Data/Fin/Basic.lean

Lines changed: 6 additions & 6 deletions
Original file line numberDiff line numberDiff line change
@@ -1865,7 +1865,7 @@ theorem addCases_right {m n : ℕ} {C : Fin (m + n) → Sort _} (hleft : ∀ i,
18651865

18661866
end Rec
18671867

1868-
theorem lift_fun_iff_succ {α : Type _} (r : α → α → Prop) [IsTrans α r] {f : Fin (n + 1) → α} :
1868+
theorem liftFun_iff_succ {α : Type _} (r : α → α → Prop) [IsTrans α r] {f : Fin (n + 1) → α} :
18691869
((· < ·) ⇒ r) f f ↔ ∀ i : Fin n, r (f (castSucc i)) (f i.succ) := by
18701870
constructor
18711871
· intro H i
@@ -1876,32 +1876,32 @@ theorem lift_fun_iff_succ {α : Type _} (r : α → α → Prop) [IsTrans α r]
18761876
rw [← le_castSucc_iff] at hij
18771877
rcases hij.eq_or_lt with (rfl | hlt)
18781878
exacts[H j, _root_.trans (ihj hlt) (H j)]
1879-
#align fin.lift_fun_iff_succ Fin.lift_fun_iff_succ
1879+
#align fin.lift_fun_iff_succ Fin.liftFun_iff_succ
18801880

18811881
/-- A function `f` on `Fin (n + 1)` is strictly monotone if and only if `f i < f (i + 1)`
18821882
for all `i`. -/
18831883
theorem strictMono_iff_lt_succ {α : Type _} [Preorder α] {f : Fin (n + 1) → α} :
18841884
StrictMono f ↔ ∀ i : Fin n, f (castSucc i) < f i.succ :=
1885-
lift_fun_iff_succ (· < ·)
1885+
liftFun_iff_succ (· < ·)
18861886
#align fin.strict_mono_iff_lt_succ Fin.strictMono_iff_lt_succ
18871887

18881888
/-- A function `f` on `Fin (n + 1)` is monotone if and only if `f i ≤ f (i + 1)` for all `i`. -/
18891889
theorem monotone_iff_le_succ {α : Type _} [Preorder α] {f : Fin (n + 1) → α} :
18901890
Monotone f ↔ ∀ i : Fin n, f (castSucc i) ≤ f i.succ :=
1891-
monotone_iff_forall_lt.trans <| lift_fun_iff_succ (· ≤ ·)
1891+
monotone_iff_forall_lt.trans <| liftFun_iff_succ (· ≤ ·)
18921892
#align fin.monotone_iff_le_succ Fin.monotone_iff_le_succ
18931893

18941894
/-- A function `f` on `Fin (n + 1)` is strictly antitone if and only if `f (i + 1) < f i`
18951895
for all `i`. -/
18961896
theorem strictAnti_iff_succ_lt {α : Type _} [Preorder α] {f : Fin (n + 1) → α} :
18971897
StrictAnti f ↔ ∀ i : Fin n, f i.succ < f (castSucc i) :=
1898-
lift_fun_iff_succ (· > ·)
1898+
liftFun_iff_succ (· > ·)
18991899
#align fin.strict_anti_iff_succ_lt Fin.strictAnti_iff_succ_lt
19001900

19011901
/-- A function `f` on `Fin (n + 1)` is antitone if and only if `f (i + 1) ≤ f i` for all `i`. -/
19021902
theorem antitone_iff_succ_le {α : Type _} [Preorder α] {f : Fin (n + 1) → α} :
19031903
Antitone f ↔ ∀ i : Fin n, f i.succ ≤ f (castSucc i) :=
1904-
antitone_iff_forall_lt.trans <| lift_fun_iff_succ (· ≥ ·)
1904+
antitone_iff_forall_lt.trans <| liftFun_iff_succ (· ≥ ·)
19051905
#align fin.antitone_iff_succ_le Fin.antitone_iff_succ_le
19061906

19071907
section AddGroup

Mathlib/Data/Fin/Tuple/Monotone.lean

Lines changed: 6 additions & 6 deletions
Original file line numberDiff line numberDiff line change
@@ -21,22 +21,22 @@ open Set Fin Matrix Function
2121

2222
variable {α : Type _}
2323

24-
theorem lift_fun_vecCons {n : ℕ} (r : α → α → Prop) [IsTrans α r] {f : Fin (n + 1) → α} {a : α} :
24+
theorem liftFun_vecCons {n : ℕ} (r : α → α → Prop) [IsTrans α r] {f : Fin (n + 1) → α} {a : α} :
2525
((· < ·) ⇒ r) (vecCons a f) (vecCons a f) ↔ r a (f 0) ∧ ((· < ·) ⇒ r) f f := by
26-
simp only [lift_fun_iff_succ r, forall_fin_succ, cons_val_succ, cons_val_zero, ← succ_castSucc,
26+
simp only [liftFun_iff_succ r, forall_fin_succ, cons_val_succ, cons_val_zero, ← succ_castSucc,
2727
castSucc_zero]
28-
#align lift_fun_vec_cons lift_fun_vecCons
28+
#align lift_fun_vec_cons liftFun_vecCons
2929

3030
variable [Preorder α] {n : ℕ} {f : Fin (n + 1) → α} {a : α}
3131

3232
@[simp]
3333
theorem strictMono_vecCons : StrictMono (vecCons a f) ↔ a < f 0 ∧ StrictMono f :=
34-
lift_fun_vecCons (· < ·)
34+
liftFun_vecCons (· < ·)
3535
#align strict_mono_vec_cons strictMono_vecCons
3636

3737
@[simp]
3838
theorem monotone_vecCons : Monotone (vecCons a f) ↔ a ≤ f 0 ∧ Monotone f := by
39-
simpa only [monotone_iff_forall_lt] using @lift_fun_vecCons α n (· ≤ ·) _ f a
39+
simpa only [monotone_iff_forall_lt] using @liftFun_vecCons α n (· ≤ ·) _ f a
4040
#align monotone_vec_cons monotone_vecCons
4141

4242
--Porting note: new lemma, in Lean3 would be proven by `Subsingleton.monotone`
@@ -51,7 +51,7 @@ theorem strictMono_vecEmpty : StrictMono (vecCons a vecEmpty)
5151

5252
@[simp]
5353
theorem strictAnti_vecCons : StrictAnti (vecCons a f) ↔ f 0 < a ∧ StrictAnti f :=
54-
lift_fun_vecCons (· > ·)
54+
liftFun_vecCons (· > ·)
5555
#align strict_anti_vec_cons strictAnti_vecCons
5656

5757
@[simp]

Mathlib/Order/Antisymmetrization.lean

Lines changed: 5 additions & 5 deletions
Original file line numberDiff line numberDiff line change
@@ -207,7 +207,7 @@ theorem ofAntisymmetrization_lt_ofAntisymmetrization_iff {a b : Antisymmetrizati
207207
theorem toAntisymmetrization_mono : Monotone (@toAntisymmetrization α (· ≤ ·) _) := fun _ _ => id
208208
#align to_antisymmetrization_mono toAntisymmetrization_mono
209209

210-
private theorem lift_fun_antisymmRel (f : α →o β) :
210+
private theorem liftFun_antisymmRel (f : α →o β) :
211211
((AntisymmRel.setoid α (· ≤ ·)).r ⇒ (AntisymmRel.setoid β (· ≤ ·)).r) f f := fun _ _ h =>
212212
⟨f.mono h.1, f.mono h.2
213213

@@ -216,26 +216,26 @@ private theorem lift_fun_antisymmRel (f : α →o β) :
216216
-/
217217
protected def OrderHom.antisymmetrization (f : α →o β) :
218218
Antisymmetrization α (· ≤ ·) →o Antisymmetrization β (· ≤ ·) :=
219-
⟨Quotient.map' f <| lift_fun_antisymmRel f, fun a b => Quotient.inductionOn₂' a b <| f.mono⟩
219+
⟨Quotient.map' f <| liftFun_antisymmRel f, fun a b => Quotient.inductionOn₂' a b <| f.mono⟩
220220
#align order_hom.antisymmetrization OrderHom.antisymmetrization
221221

222222
@[simp]
223223
theorem OrderHom.coe_antisymmetrization (f : α →o β) :
224-
⇑f.antisymmetrization = Quotient.map' f (lift_fun_antisymmRel f) :=
224+
⇑f.antisymmetrization = Quotient.map' f (liftFun_antisymmRel f) :=
225225
rfl
226226
#align order_hom.coe_antisymmetrization OrderHom.coe_antisymmetrization
227227

228228
/- Porting notes: Removed @[simp] attribute. With this `simp` lemma the LHS of
229229
`OrderHom.antisymmetrization_apply_mk` is not in normal-form -/
230230
theorem OrderHom.antisymmetrization_apply (f : α →o β) (a : Antisymmetrization α (· ≤ ·)) :
231-
f.antisymmetrization a = Quotient.map' f (lift_fun_antisymmRel f) a :=
231+
f.antisymmetrization a = Quotient.map' f (liftFun_antisymmRel f) a :=
232232
rfl
233233
#align order_hom.antisymmetrization_apply OrderHom.antisymmetrization_apply
234234

235235
@[simp]
236236
theorem OrderHom.antisymmetrization_apply_mk (f : α →o β) (a : α) :
237237
f.antisymmetrization (toAntisymmetrization _ a) = toAntisymmetrization _ (f a) :=
238-
@Quotient.map_mk _ _ (_root_.id _) (_root_.id _) f (lift_fun_antisymmRel f) _
238+
@Quotient.map_mk _ _ (_root_.id _) (_root_.id _) f (liftFun_antisymmRel f) _
239239
#align order_hom.antisymmetrization_apply_mk OrderHom.antisymmetrization_apply_mk
240240

241241
variable (α)

0 commit comments

Comments
 (0)