@@ -1865,7 +1865,7 @@ theorem addCases_right {m n : ℕ} {C : Fin (m + n) → Sort _} (hleft : ∀ i,
1865
1865
1866
1866
end Rec
1867
1867
1868
- theorem lift_fun_iff_succ {α : Type _} (r : α → α → Prop ) [IsTrans α r] {f : Fin (n + 1 ) → α} :
1868
+ theorem liftFun_iff_succ {α : Type _} (r : α → α → Prop ) [IsTrans α r] {f : Fin (n + 1 ) → α} :
1869
1869
((· < ·) ⇒ r) f f ↔ ∀ i : Fin n, r (f (castSucc i)) (f i.succ) := by
1870
1870
constructor
1871
1871
· intro H i
@@ -1876,32 +1876,32 @@ theorem lift_fun_iff_succ {α : Type _} (r : α → α → Prop) [IsTrans α r]
1876
1876
rw [← le_castSucc_iff] at hij
1877
1877
rcases hij.eq_or_lt with (rfl | hlt)
1878
1878
exacts[H j, _root_.trans (ihj hlt) (H j)]
1879
- #align fin.lift_fun_iff_succ Fin.lift_fun_iff_succ
1879
+ #align fin.lift_fun_iff_succ Fin.liftFun_iff_succ
1880
1880
1881
1881
/-- A function `f` on `Fin (n + 1)` is strictly monotone if and only if `f i < f (i + 1)`
1882
1882
for all `i`. -/
1883
1883
theorem strictMono_iff_lt_succ {α : Type _} [Preorder α] {f : Fin (n + 1 ) → α} :
1884
1884
StrictMono f ↔ ∀ i : Fin n, f (castSucc i) < f i.succ :=
1885
- lift_fun_iff_succ (· < ·)
1885
+ liftFun_iff_succ (· < ·)
1886
1886
#align fin.strict_mono_iff_lt_succ Fin.strictMono_iff_lt_succ
1887
1887
1888
1888
/-- A function `f` on `Fin (n + 1)` is monotone if and only if `f i ≤ f (i + 1)` for all `i`. -/
1889
1889
theorem monotone_iff_le_succ {α : Type _} [Preorder α] {f : Fin (n + 1 ) → α} :
1890
1890
Monotone f ↔ ∀ i : Fin n, f (castSucc i) ≤ f i.succ :=
1891
- monotone_iff_forall_lt.trans <| lift_fun_iff_succ (· ≤ ·)
1891
+ monotone_iff_forall_lt.trans <| liftFun_iff_succ (· ≤ ·)
1892
1892
#align fin.monotone_iff_le_succ Fin.monotone_iff_le_succ
1893
1893
1894
1894
/-- A function `f` on `Fin (n + 1)` is strictly antitone if and only if `f (i + 1) < f i`
1895
1895
for all `i`. -/
1896
1896
theorem strictAnti_iff_succ_lt {α : Type _} [Preorder α] {f : Fin (n + 1 ) → α} :
1897
1897
StrictAnti f ↔ ∀ i : Fin n, f i.succ < f (castSucc i) :=
1898
- lift_fun_iff_succ (· > ·)
1898
+ liftFun_iff_succ (· > ·)
1899
1899
#align fin.strict_anti_iff_succ_lt Fin.strictAnti_iff_succ_lt
1900
1900
1901
1901
/-- A function `f` on `Fin (n + 1)` is antitone if and only if `f (i + 1) ≤ f i` for all `i`. -/
1902
1902
theorem antitone_iff_succ_le {α : Type _} [Preorder α] {f : Fin (n + 1 ) → α} :
1903
1903
Antitone f ↔ ∀ i : Fin n, f i.succ ≤ f (castSucc i) :=
1904
- antitone_iff_forall_lt.trans <| lift_fun_iff_succ (· ≥ ·)
1904
+ antitone_iff_forall_lt.trans <| liftFun_iff_succ (· ≥ ·)
1905
1905
#align fin.antitone_iff_succ_le Fin.antitone_iff_succ_le
1906
1906
1907
1907
section AddGroup
0 commit comments