Skip to content

Commit 91f0ca6

Browse files
committed
feat: inclusion maps into finite coproducts in Stonean are open embeddings (#6774)
... both the explicit and the abstract one. - [x] depends on: #6771 Co-authored-by: Riccardo Brasca @riccardobrasca [riccardo.brasca@gmail.com](mailto:riccardo.brasca@gmail.com) Co-authored-by: Filippo A E Nuccio @faenuccio [filippo.nuccio@univ-st-etienne.fr](mailto:filippo.nuccio@univ-st-etienne.fr)
1 parent 7c2f384 commit 91f0ca6

File tree

1 file changed

+15
-0
lines changed

1 file changed

+15
-0
lines changed

Mathlib/Topology/Category/Stonean/Limits.lean

Lines changed: 15 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -126,6 +126,21 @@ def coproductIsoCoproduct : finiteCoproduct X ≅ ∐ X :=
126126
Limits.IsColimit.coconePointUniqueUpToIso
127127
(finiteCoproduct.isColimit' X) (Limits.colimit.isColimit _)
128128

129+
/-- The inclusion maps into the explicit finite coproduct are open embeddings. -/
130+
lemma finiteCoproduct.openEmbedding_ι {α : Type} [Fintype α] (Z : α → Stonean.{u}) (a : α) :
131+
OpenEmbedding (finiteCoproduct.ι Z a) :=
132+
openEmbedding_sigmaMk (σ := fun a => (Z a))
133+
134+
/-- The inclusion maps into the abstract finite coproduct are open embeddings. -/
135+
lemma Sigma.openEmbedding_ι {α : Type} [Fintype α] (Z : α → Stonean.{u}) (a : α) :
136+
OpenEmbedding (Sigma.ι Z a) := by
137+
refine' OpenEmbedding.of_comp _ (homeoOfIso (coproductIsoCoproduct Z).symm).openEmbedding _
138+
convert finiteCoproduct.openEmbedding_ι Z a
139+
ext x
140+
change ((Sigma.ι Z a) ≫ (coproductIsoCoproduct Z).inv) x = _
141+
simp only [coproductIsoCoproduct, colimit.comp_coconePointUniqueUpToIso_inv,
142+
finiteCoproduct.explicitCocone_pt, finiteCoproduct.explicitCocone_ι, Discrete.natTrans_app]
143+
129144
end FiniteCoproducts
130145

131146
end Stonean

0 commit comments

Comments
 (0)