@@ -90,7 +90,7 @@ class LieRingModule (L : Type v) (M : Type w) [LieRing L] [AddCommGroup M] exten
90
90
/-- A Lie module is a module over a commutative ring, together with a linear action of a Lie
91
91
algebra on this module, such that the Lie bracket acts as the commutator of endomorphisms. -/
92
92
class LieModule (R : Type u) (L : Type v) (M : Type w) [CommRing R] [LieRing L] [LieAlgebra R L]
93
- [AddCommGroup M] [Module R M] [LieRingModule L M] where
93
+ [AddCommGroup M] [Module R M] [LieRingModule L M] : Prop where
94
94
/-- A Lie module bracket is compatible with scalar multiplication in its first argument. -/
95
95
protected smul_lie : ∀ (t : R) (x : L) (m : M), ⁅t • x, m⁆ = t • ⁅x, m⁆
96
96
/-- A Lie module bracket is compatible with scalar multiplication in its second argument. -/
@@ -467,9 +467,7 @@ variable (f : L₁ →ₗ⁅R⁆ L₂)
467
467
/-- A Lie ring module may be pulled back along a morphism of Lie algebras.
468
468
469
469
See note [reducible non-instances]. -/
470
- @[reducible]
471
- def LieRingModule.compLieHom : LieRingModule L₁ M
472
- where
470
+ def LieRingModule.compLieHom : LieRingModule L₁ M where
473
471
bracket x m := ⁅f x, m⁆
474
472
lie_add x := lie_add (f x)
475
473
add_lie x y m := by simp only [LieHom.map_add, add_lie]
@@ -482,11 +480,8 @@ theorem LieRingModule.compLieHom_apply (x : L₁) (m : M) :
482
480
rfl
483
481
#align lie_ring_module.comp_lie_hom_apply LieRingModule.compLieHom_apply
484
482
485
- /-- A Lie module may be pulled back along a morphism of Lie algebras.
486
-
487
- See note [reducible non-instances]. -/
488
- @[reducible]
489
- def LieModule.compLieHom [Module R M] [LieModule R L₂ M] :
483
+ /-- A Lie module may be pulled back along a morphism of Lie algebras. -/
484
+ theorem LieModule.compLieHom [Module R M] [LieModule R L₂ M] :
490
485
@LieModule R L₁ M _ _ _ _ _ (LieRingModule.compLieHom M f) :=
491
486
{ LieRingModule.compLieHom M f with
492
487
smul_lie := fun t x m => by
0 commit comments